دوره 13، شماره 2 - ( مجله کنترل، جلد 13، شماره 2، تابستان 1398 )                   جلد 13 شماره 2,1398 صفحات 53-66 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanpour Dehnavi M, Hosseini sani S K. Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines. JoC. 2019; 13 (2) :53-66
URL: http://joc.kntu.ac.ir/article-1-617-fa.html
حسن پور دهنوی محمود، حسینی ثانی سید کمال. شناسایی و کنترل تطبیقی موقعیت و سرعت موتور DC مغناطیس دائم با مشخصه غیرخطی ناحیه مرده مبتنی بر ماشین‌های بردار پشتیبان. مجله کنترل. 1398; 13 (2) :53-66

URL: http://joc.kntu.ac.ir/article-1-617-fa.html


1- دانشگاه فردوسی مشهد
چکیده:   (427 مشاهده)
در این مقاله نوع جدیدی از شبکه¬های عصبی به نام ماشین های بردار پشتیبان حداقل مربعات که در سال¬های اخیر به منظور شناسایی سیستم های غیرخطی مورد توجه زیادی قرار گرفته¬اند، جهت شناسایی سیستم موتور DC با مشخصه غیرخطی ناحیه مرده به کارگرفته شده است. سیستم شناسایی شده پس از خطی سازی در هر واحد زمانی به صورت روی خط اطلاعات مدل را در اختیار کنترل کننده پیش بین موقعیت و سرعت به منظور دنبال کردن مسیر مطلوب موقعیت و سرعت قرار می دهد. در روش پیشنهادی حلقه های کنترل گشتاور، سرعت و موقعیت به صورت کاملا خودکار و براساس مدل شناسایی شده بسته می شوند. روش پیشنهادی برروی سرودرایور ساخته شده پیاده سازی شده  است و نتایج عملی ترسیم و تحلیل شده اند. مزیت بزرگ این روش عدم نیاز به تنظیم پارامترهای کنترل کننده های جریان، سرعت و موقعیت می باشد. شناسایی روی خط سیستم امکان دنبال کردن تغییرات دینامیکی فرآیند را فراهم می-نماید. علاوه برآن ساختار پیشنهادی توانایی غلبه بر اصطکاک کولمب به ویژه در سرعت های پایین را دارا بوده و قادر است گشتاور، سرعت و موقعیت  موتور DC مغناطیس دائم را به طور دقیقی کنترل نماید. 
متن کامل [PDF 1047 kb]   (62 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۷/۶/۲۲ | پذیرش: ۱۳۹۷/۱۱/۲۴

فهرست منابع
1. B. Armstrong, B. Dupont, and C.D. Wit, "A survey of models, analysis tools and compensation methods for the control of machines with friction," Automatica, vol. 30, no. 7, pp. 1083-1138, 1994. [DOI:10.1016/0005-1098(94)90209-7]
2. Guanrong Chen, Ying Chen, and H. Ogmen, "Identifying chaotic systems via a Wiener-type cascade model, IEEE Control Systems, vol. 17, no. 5, pp. 29-36, 1997. [DOI:10.1109/37.621467]
3. Ming Xu, Guanrong Chen, and Yan-TaoTian, "Identifying chaotic systems using Wiener and Hammerstein cascade models," Mathematical and Computer Modelling, vol. 33, no. 4-5, pp. 483-493, 2001. [DOI:10.1016/S0895-7177(00)00256-9]
4. Norquay SJ, Palazoglu A, Romagnoli JA, "Model predictive control based on Wiener models," Chemical Engineering Science, vol. 53, no. 1, pp. 75-84, 1998. [DOI:10.1016/S0009-2509(97)00195-4]
5. H. Al-Duwaish, M.N. Karim, V. Chandrasekar, "Use of multilayer feedforward neural networks in identification and control of Wiener model," IEE Proceedings Control Theory and Applications, vol. 143, no. 3, pp. 255-258, 1996. [DOI:10.1049/ip-cta:19960376]
6. A. anczak, "Neural network approach for identification of Hammerstein systems," International Journal of Control, vol. 76, no. 17, pp. 1749-1766, 2003. [DOI:10.1080/00207170310001633259]
7. M.A. Mahini, M. Teshnehlab, and M. A. khanehsar, "Nonlinear System Identifcation Using Hammerstein-Wiener Neural Network and subspace algorithms," Journal of Advances in Computer Engineering and Technology, vol. 1, no. 3, 2015.
8. Mingyong Cui, Haifang Liu, Zhonghui Li, Yinggan Tang, and Xinping Guan , "Identification of Hammerstein model using functional link artificial neural network," Elsevier Science Publishers Neurocomputing, vol. 142, pp. 419-428, 2014. [DOI:10.1016/j.neucom.2014.03.051]
9. T. Kara, I. Eker, "Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments," Energy Conversion and Management, vol. 45, no. 7-8, pp. 1087-1106, 2004. [DOI:10.1016/j.enconman.2003.08.005]
10. J. Peng, R. Dubay, "Identification and adaptive neural network control of a DC motor system with dead-zone characteristics," ISA Transactions, vol. 50, no. 4, pp. 588-598, 2011. [DOI:10.1016/j.isatra.2011.06.005]
11. S. Bennett, "Development of the PID controller," IEEE Control Systems Magazine vol. 13, no. 6, pp. 58-62, 1993. [DOI:10.1109/37.248006]
12. M.N. Howell, T.J. Gordon, M.C. Best, "The application of continuous action reinforcement learning automata to adaptive PID tuning," IEEE Seminar on learning systems for control, 2000. [DOI:10.1049/ic:20000343]
13. Chun-Fei Hsu, Bore-Kuen Lee, "FPGA-based adaptive PID control of a DC motor driver via sliding-mode approach," Expert Systems with Applications, vol. 38, no. 9, pp. 11866-11872, 2011. [DOI:10.1016/j.eswa.2011.02.185]
14. Ruben Tapia-Olvera, Francisco Beltran-Carbajal, Omar Aguilar-Mejia, and Antonio Valderrabano-Gonzalez, "An Adaptive Speed Control Approach for DC Shunt Motors," Energies, 2016. [DOI:10.3390/en9110961]
15. A.Aziz Khater, Mohammad El-Bardini, and Nabila M. El-Rabaie, "Embedded Adaptive Fuzzy Controller Based on Reinforcement Learning for DC Motor with Flexible Shaft," Arabian Journal for Science and Engineering, vol. 40, no. 8, pp. 2389-2406, 2015. [DOI:10.1007/s13369-015-1752-4]
16. F. Cameron, D.E. Seborg, "A self-tuning controller with a PID structure," International Journal of Control, vol. 38, no. 2, pp. 401-17, 1983. [DOI:10.1080/00207178308933083]
17. Reza Akbari Hasanjani, Shahram Javadi, Reza Sabbaghi Nadooshan, "DC motor speed control by self-tuning fuzzy PID algorithm, " Transactions of the Institute of Mesearment and Control, vol. 37, no. 2, 2015. [DOI:10.1177/0142331214535619]
18. P. Vega, C. Prada, V. Aleixander, "Self-tuning predictive PID controller," IEE Proceedings, Control Theory and Applications, vol. 138, no. 3, pp. 303-311, 1991. [DOI:10.1049/ip-d.1991.0041]
19. F.G. Martins, A.N. Coelho, "Application of feed-forward artificial neural networks to improve process control of PID-based control algorithms," Computers and Chemical Engineering, vol. 24, no. 2-7, pp. 853-858, 2000. [DOI:10.1016/S0098-1354(00)00339-2]
20. J. Chen, T.C. Huang, "Applying neural networks to on-line updated PID controllers for nonlinear process control," Journal of Process Control, vol. 14, no. 2, pp. 211-230, 2004. [DOI:10.1016/S0959-1524(03)00039-8]
21. X.F. Yuan, Y.N. Wang, "Neural networks based self-learning PID control of electronic throttle," Nonlinear Dynamics, vol. 55, no. 4, pp. 385-393, 2009. [DOI:10.1007/s11071-008-9371-1]
22. Xing-Song Wang, Chun-Yi Su, Henry Hong, "Robust adaptive control of a class of nonlinear systems with unknown dead-zone," Automatica, vol. 40, no. 3, pp. 407-413, 2004. [DOI:10.1016/j.automatica.2003.10.021]
23. W. Zhonghua, Y. Bo, C. Lin, Z. Shusheng, "Robust adaptive deadzone compensation of DC servo system," IEE Proceedings - Control Theory and Applications, vol. 153, no. 6, pp. 709-713, 2006. [DOI:10.1049/ip-cta:20050253]
24. J. Zhou, C. Wen, Y. Zhang, "Adaptive output control of nonlinear systems with uncertain deadzone nonlinearity," IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 504-511, 2006. [DOI:10.1109/TAC.2005.864200]
25. S. Ibrir, W.F. Xie, C.Y. Su, "Adaptive tracking of nonlinear systems with nonsymmetric deadzone input," Automatica, vol. 43, no. 3, pp. 522-530, 2007. [DOI:10.1016/j.automatica.2006.09.022]
26. Seong Ik Han, Kwon Soon Lee, Min Gyu Park, and Jang Myung Lee, "Robust adaptive deadzone and friction compensation of robot manipulator using RWCMAC network," Journal of Mechanical Science and Technology, vol. 25, no. 6, pp. 1583-1594, 2011. [DOI:10.1007/s12206-011-0328-9]
27. Jianyong Yao, Zongxia Jiao, and Dawei Ma, "Adaptive Robust Control of DC Motors with Extended State Observer," IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3630-3637, 2014. [DOI:10.1109/TIE.2013.2281165]
28. J.O. Jang, G.J. Jeon, "A parallel neuro-controller for DC motors containing nonlinear friction," Neurocomputing, vol. 30, no. 1-4, pp. 233-248, 2000. [DOI:10.1016/S0925-2312(99)00128-9]
29. R.R. Selmic, F.L. Lewis, "Deadzone compensation in motion control systems using neural networks," IEEE Transactions on Automatic Control, 2000. [DOI:10.1007/978-1-4471-3687-3_3]
30. T.P. Zhang, S.S. Ge, "Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs," Automatica, vol. 43, no. 6, pp. 1021-1033, 2007. [DOI:10.1016/j.automatica.2006.12.014]
31. Lei Liu, Yan-Jun Liu, and C.L. Philip Chen, "Adaptive Neural Network Control for a DC Motor System with Dead-Zone," Nonlinear Dynamics, vol. 72, no. 1-2, pp. 141-147, 2013. [DOI:10.1007/s11071-012-0698-2]
32. Liping Fan, Yi Liu, "Fuzzy Self-Tuning PID Control of the Main Drive System for Four-High Hot Rolling Mill," Journal of Advanced Manufacturing Systems, vol. 14, no. 1, pp. 11-22, 2015. [DOI:10.1142/S021968671550002X]
33. S.Y. Oh, D.J. Park, "Design of new adaptive fuzzy logic controller for nonlinear plants with unknown or time-varying dead zones," IEEE Transactions on Fuzzy Systems, vol. 6, no. 4, pp. 482-491, 1998. [DOI:10.1109/91.728437]
34. F.L. Lewis, W.K. Tim, L.Z. Wang, and Z.X. Li, "Deadzone compensation in motion control systems using adaptive fuzzy logic control," IEEE Transactions on Control Systems Technology, vol. 7, no. 6, pp.731-742, 1999. [DOI:10.1109/87.799674]
35. Luting Miao, Yuxin Sun, Huangqiu Zhu, AND Xianxing Liu, "Decoupling Control of Bearingless Induction Motor Based on LS-SVM Inverse System," Mechanics and Materials, vol. 703, pp. 331-334, 2015. [DOI:10.4028/www.scientific.net/AMM.703.331]
36. Hossam Mohammad Khalil, and Mohamad El Bardini, "Support Vector Machines Based Adaptive Controller for Piston Hydraulic Motor," International Journal of Control and Automation, vol. 4, no. 3, 2011.
37. Stefan Tötterman, Hannu T. Toivonen, "Support vector method for identification of Wiener models," Journal of Process Control, vol. 19, no. 7, pp. 1174-1181, 2009. [DOI:10.1016/j.jprocont.2009.03.003]
38. I.B. Tijani, Rini Akmeliawati, "Support vector regression-based friction modeling and compensation in motion control system," Engineering Applications of Artificial Intelligence, vol. 25, no. 5, pp. 1043-1052, 2012. [DOI:10.1016/j.engappai.2012.03.018]
39. Serdar Iplikci, "A support vector machine-based control application to the experimental three tank system," ISA Transactions, vol. 49, no. 3, pp. 376-386, 2010. [DOI:10.1016/j.isatra.2010.03.013]
40. Vincent Laurain, Roland Tóth, Dario Piga, and Wei Xing Zheng, "An instrumental least squares support vector machine for nonlinear system identification," Automatica, vol. 54, pp. 340-347, 2015. [DOI:10.1016/j.automatica.2015.02.017]
41. He Yanzhao, Zheng Shiqiang, and Fang Jiancheng, "Start-up current adaptive control for sensorless high-speed brushless DC motors based on inverse system method and internal mode controller," Chinese Journal of Aeronautics, vol. 28, 2016.
42. Johan Suykens, "Least Squares Support Vector Machines, " NATO-ASI Learning Theory and Practice Leuven July 2002. [DOI:10.1142/5089]
43. Ruchika, Neha Raghu, "Model Predictive Control: History and Development," International Journal of Engineering Trends and Technology(IJETT), vol. 4, no. 6, pp. 2600-2602, 2013.
44. D.W. Clarke, "Generalized predictive control," Automatica, vol. 23, no. 2, pp. 137-148, 1987. [DOI:10.1016/0005-1098(87)90087-2]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2019 All Rights Reserved | Journal of Control

Designed & Developed by : Yektaweb