Volume 14, Issue 4 (Journal of Control, V.14, N.4 Winter 2021)                   JoC 2021, 14(4): 25-41 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabzevari S, Vali A R, Arvan M R, Dehghan S M, Ferdowsi M H. Comparison Performance of Stochastic Estimators and Symmetry-Preserving Observer to Determine Nanosatellite Attitude with a Single-Sensor Magnetometer. JoC. 2021; 14 (4) :25-41
URL: http://joc.kntu.ac.ir/article-1-662-en.html
1- Malek Ashtar University of Technology
Abstract:   (3888 Views)
Designing the estimator that can determine the attitude with a single sensor is vital due to the limited weight and volume in the nano-satellite, the problems caused by the limited lifetime of the mechanical gyroscope in the long term and the eclipse phenomenon. To compensate for data deficiency, a two-nested filter has been utilized in this paper. To this end, the attitude in the second filter is estimated using the sensor data and the magnetic field derivative estimation from the first filter by the extended Kalman filter. Two stochastic algorithms named as multiplicative extended Kalman filter and square-root unscented quaternion estimator are compared with the proposed symmetry-preserving nonlinear observer in order to obtain an appropriate accuracy for determining the attitude of the nano-satellite, which has only a three-axis magnetometer. The proposed method is based on invariant observers under the action of the Lie group. The moving frame approach has been used so that the observer's parameters can be adjusted through the invariant error dynamic equations. Simulation results confirm an acceptable accuracy in all three algorithms for both time and frequency response analyses. However, the root mean square error of the attitude error with a nonlinear observer is much less than the stochastic algorithm in case of a larger initial estimation error. Furthermore, this approach guarantees convergence by the Lyapunov stability proof owing to setting the parameters with periodic differential Riccati equations.
Full-Text [PDF 3200 kb]   (611 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2019/04/18 | Accepted: 2020/01/12 | ePublished ahead of print: 2020/10/5 | Published: 2021/02/19

1. [ ] Cilden-Guler, Demet, et al., "Nanosatellite Attitude Estimation using Kalman-Type Filters with Non-Gaussian Noise", Elsevier, Aerospace Science and Technology, Vol. 92, 2019, pp.66-76. [DOI:10.1016/j.ast.2019.05.055]
2. [ ] Burton, R., Rock, S., Springmann, J. and Cutler, J., "Online attitude determination of a passively magnetically stabilized spacecraft", Elsevier, Acta Astronautica, Vol. 133, 2017, pp.269-281. [DOI:10.1016/j.actaastro.2017.01.024]
3. [ ] Firoozi, D. and Namvar, M., "Analysis of gyro noise in non-linear attitude estimation using a single vector measurement", IET Control Theory & Applications, Vol. 6, No. 14, 2012, pp.2226-2234. [DOI:10.1049/iet-cta.2011.0347]
4. [ ] Hajiyev, C. and Guler, D.C., "Review on gyroless attitude determination methods for small satellites", Progress in Aerospace Sciences, 90, 2017, pp.54-66. [DOI:10.1016/j.paerosci.2017.03.003]
5. [ ] Psiaki, M.L., Martel, F. and Pal, P.K., "Three-axis attitude determination via Kalman filtering of magnetometer data", Journal of Guidance, Control, and Dynamics, Vol. 13, No. 3, 1990, pp.506-514. [DOI:10.2514/3.25364]
6. [ ] Natanson, M., Challa, J., Deutchmann, D. and Baker, F., "Magnetometer-Only Attitude and Rate Estimation for Gyroless Spacecraft", In Proceedings of the Third International Symposium on Space Mission Operations and Ground Data Systems, 1994.
7. [ ] Searcy, J.D. and Pernicka, H.J., "Magnetometer-only attitude determination using novel two-step Kalman filter approach", Journal of Guidance, Control, and Dynamics, Vol. 35, No. 6, 2012, pp.1693-1701. [DOI:10.2514/1.57344]
8. [ ] Searcy, J.D., "Observability-enhanced dual-filter design for attitude estimation with minimum observations", Ph.D. thesis, Missouri University of Science and Technology, 2013.
9. [ ] Springmann, J.C., "Satellite Attitude Determination with Low-Cost Sensors", Ph.D. thesis, University of Michigan, 2013.
10. [ ] Tuthill, J.D., "Design and simulation of a nano-satellite attitude determination system", Doctoral dissertation, Monterey, California. Naval Postgraduate School, 2009.
11. [ ] Chingiz Hajiyev, Demet Cilden-Guler, "Gyroless Nanosatellite Attitude Estimation in Loss of Sun Sensor Measurements", Elsevier, IFAC Papers OnLine, Vol. 51, 2018, pp.89-94. [DOI:10.1016/j.ifacol.2018.11.254]
12. [ ] خسرویان همایی، علیرضا، طراحی رؤیت‌کننده و کنترل‌کننده‌ی غیرخطی برای تخمین و کنترل وضعیت ماهواره، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی شریف، ایران، شهریور 89.
13. [ ] Bonnabel, S., Martin, P. and Rouchon, P., "Symmetry-preserving observers", IEEE Transactions on Automatic Control, Vol. 53, No. 11, 2008, pp.2514-2526. [DOI:10.1109/TAC.2008.2006929]
14. [ ] Sidi, M.J., Spacecraft dynamics and control: a practical engineering approach, Vol. 7, Cambridge university press, 2000.
15. [ ] کیانی، مریم، تخمین تلفیقی پارامترهای مداری و وضعی ماهواره با استفاده از فیلترهای غیرخطی هیبرید، رساله دکتری، دانشگاه صنعتی شریف، ایران، دی 93.
16. [ ] Anguelova, M., Observability and identifiability of nonlinear systems with applications in biology. Gothenburg, Sweden: Chalmers University of Technology, 2007.
17. [ ] ازگلی، سجاد و عاروان، محمدرضا، مدل‌سازی و شبیه‌سازی سامانه‌های متحرک، انتشارات یامهدی، ۱۳۸۹.
18. [ ] Carletta, S. and Teofilatto, P., "Design and Numerical Validation of an Algorithm for the Detumbling and Angular Rate Determination of a CubeSat Using Only Three-Axis Magnetometer Data", International Journal of Aerospace Engineering, 2018. [DOI:10.1155/2018/9768475]
19. [ ] Simon, D., Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006. [DOI:10.1002/0470045345]
20. [ ] Olver, P.J., Equivalence, invariants and symmetry, Cambridge University Press, 1995. [DOI:10.1017/CBO9780511609565]
21. [ ] Khalil, H.K. and Grizzle, J.W., Nonlinear systems, Vol. 3. Upper Saddle River, NJ: Prentice hall, 2002.
22. [ ] Vidyasagar M., Nonlinear systems analysis, Vol. 42. Siam, 2002. [DOI:10.1137/1.9780898719185]
23. [ ] Sarkka, S., "On unscented Kalman filtering for state estimation of continuous-time nonlinear systems", IEEE Transactions on automatic control, Vol. 52, No. 9, 2007, pp.1631-1641. [DOI:10.1109/TAC.2007.904453]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb