دوره 15، شماره 2 - ( مجله کنترل، جلد 15، شماره 2، تابستان 1400 )                   جلد 15 شماره 2,1400 صفحات 80-69 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ranjbar B, Ranjbar Noiey A, Rezaie B. Design of Decentralized Adaptive Integral Terminal Sliding Mode Controller for Linear Interconnected Mechanical Systems in the Presence of External Disturbance. JoC 2021; 15 (2) :69-80
URL: http://joc.kntu.ac.ir/article-1-731-fa.html
رنجبر بابک، رنجبر نوعی ابوالفضل، رضایی بهروز. طراحی کنترل کننده مدلغزشی ترمینال انتگرال تطبیقی غیرمتمرکز برای سیستم های مکانیکی متصل خطی درحضور اغتشاش خارجی. مجله کنترل. 1400; 15 (2) :69-80

URL: http://joc.kntu.ac.ir/article-1-731-fa.html


1- دانشکده مهندسی برق و کامپیوتر- دانشگاه صنعتی نوشیروانی بابل
چکیده:   (16280 مشاهده)
در این مقاله یک کلاس از سیستم­ های مکانیکی متصل خطی دارای اغتشاش با اتصالات خطی ناشناخته بین زیرسیستم ­ها در نظر گرفته شده که برای ردیابی ورودی مرجع، تکنیک کنترل مدلغزشی ترمینال انتگرال تطبیقی غیرمتمرکز (DAITSMC) پیشنهاد شده است. برای کنترل غیرمتمرکز، سیستم متصل به چند زیرسیستم تقسیم شده و با انتخاب سطح لغزش ترمینال انتگرالی برای هر زیرسیستم، علاوه بر افزایش سرعت ردیابی ورودی مرجع در زمان محدود، اثر اغتشاش حذف می­ شود. اثر اتصالات خطی ناشناخته بین زیرسیستم ­ها بصورت نامعینی در نظر گرفته شده و بدلیل مشخص نبودن کران آن­ ها، توسط روابط تطبیقی تخمین زده می ­شوند. با کاندید شدن یک تابع لیاپانوف و انتخاب مناسب پارامترهای طراحی، پایداری سیستم حلقه بسته تضمین می ­شود. روش پیشنهادی بر روی دو سیستم مکانیکی متصل اعمال گشته؛ مقایسه نتایج شبیه ­سازی با چند روش کنترلی،  نشان داده که روش پیشنهادی DAITSMC برای سیستم­ های متصل در حضور اغتشاش کارامد است و خطای همگرایی سریع­ تر صفر می ­شود.
متن کامل [PDF 876 kb]   (1124 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1398/11/9 | پذیرش: 1399/4/20 | انتشار الکترونیک پیش از انتشار نهایی: 1399/4/30

فهرست منابع
1. [1] X. Xiang, C. Yu, and Q. Zhang, "Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties," Computers & Operations Research, vol. 84, pp. 165-177, 2017. [DOI:10.1016/j.cor.2016.09.017]
2. [2] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, "Continuous finite-time control for robotic manipulators with terminal sliding mode," Automatica, vol. 41, no. 11, pp. 1957-1964, 2005. [DOI:10.1016/j.automatica.2005.07.001]
3. [3] Q. Hu and G. Ma, "Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver," Aerospace Science and Technology, vol. 9, no. 4, pp. 307-317, 2005. [DOI:10.1016/j.ast.2005.02.001]
4. [4] C. Zhang, Z. Chen, and C. Wei, "Sliding mode disturbance observer-based backstepping control for a transport aircraft," Science China Information Sciences, vol. 57, no. 5, pp. 1-16, 2014. [DOI:10.1007/s11432-013-4787-8]
5. [5] E.-H. Zheng, J.-J. Xiong, and J.-L. Luo, "Second order sliding mode control for a quadrotor UAV," ISA transactions, vol. 53, no. 4, pp. 1350-1356, 2014. [DOI:10.1016/j.isatra.2014.03.010]
6. [6] D. Ginoya, P. Shendge, and S. Phadke, "Sliding mode control for mismatched uncertain systems using an extended disturbance observer," IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1983-1992, 2013. [DOI:10.1109/TIE.2013.2271597]
7. [7] S. Mondal and C. Mahanta, "Chattering free adaptive multivariable sliding mode controller for systems with matched and mismatched uncertainty," ISA transactions, vol. 52, no. 3, pp. 335-341, 2013. [DOI:10.1016/j.isatra.2012.12.007]
8. [8] J.-J. Yan and T.-L. Liao, "Discrete sliding mode control for hybrid synchronization of continuous Lorenz systems with matched/unmatched disturbances," Transactions of the Institute of Measurement and Control, vol. 40, no. 5, pp. 1417-1424, 2018. [DOI:10.1177/0142331216683773]
9. [9] J. A. González, A. Barreiro, S. Dormido, and A. Baños, "Nonlinear adaptive sliding mode control with fast non-overshooting responses and chattering avoidance," Journal of the Franklin Institute, vol. 354, no. 7, pp. 2788-2815, 2017. [DOI:10.1016/j.jfranklin.2017.01.025]
10. [10] X. Yu and O. Kaynak, "Sliding-mode control with soft computing: A survey," IEEE transactions on industrial electronics, vol. 56, no. 9, pp. 3275-3285, 2009. [DOI:10.1109/TIE.2009.2027531]
11. [11] I. M. Boiko, "Chattering in sliding mode control systems with boundary layer approximation of discontinuous control," International Journal of Systems Science, vol. 44, no. 6, pp. 1126-1133, 2013. [DOI:10.1080/00207721.2011.652233]
12. [12] G. Bartolini, A. Pisano, E. Punta, and E. Usai, "A survey of applications of second-order sliding mode control to mechanical systems," International Journal of control, vol. 76, no. 9-10, pp. 875-892, 2003. [DOI:10.1080/0020717031000099010]
13. [13] K. D. Young, V. I. Utkin, and U. Ozguner, "A control engineer's guide to sliding mode control," IEEE transactions on control systems technology, vol. 7, no. 3, pp. 328-342, 1999. [DOI:10.1109/87.761053]
14. [14] Y. Feng, F. Han, and X. Yu, "Chattering free full-order sliding-mode control," Automatica, vol. 50, no. 4, pp. 1310-1314, 2014. [DOI:10.1016/j.automatica.2014.01.004]
15. [15] S. Mobayen, "Finite‐time stabilization of a class of chaotic systems with matched and unmatched uncertainties: An LMI approach," Complexity, vol. 21, no. 5, pp. 14-19, 2016. [DOI:10.1002/cplx.21624]
16. [16] S. Mobayen, D. Baleanu, and F. Tchier, "Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems," Journal of Vibration and Control, vol. 23, no. 18, pp. 2912-2925, 2017. [DOI:10.1177/1077546315623887]
17. [17] D. Zhao, S. Li, and F. Gao, "Finite time position synchronised control for parallel manipulators using fast terminal sliding mode," International Journal of Systems Science, vol. 40, no. 8, pp. 829-843, 2009. [DOI:10.1080/00207720902961022]
18. [18] S. Mobayen, "Finite-time robust-tracking and model-following controller for uncertain dynamical systems," Journal of Vibration and Control, vol. 22, no. 4, pp. 1117-1127, 2016. [DOI:10.1177/1077546314538991]
19. [19] A. Modirrousta and M. Khodabandeh, "Adaptive non-singular terminal sliding mode controller: new design for full control of the quadrotor with external disturbances," Transactions of the Institute of Measurement and Control, vol. 39, no. 3, pp. 371-383, 2017. [DOI:10.1177/0142331215611210]
20. [20] A. Al-Ghanimi, J. Zheng, and Z. Man, "A fast non-singular terminal sliding mode control based on perturbation estimation for piezoelectric actuators systems," International Journal of Control, vol. 90, no. 3, pp. 480-491, 2017. [DOI:10.1080/00207179.2016.1185157]
21. [21] H. Komurcugil, "Non-singular terminal sliding-mode control of DC-DC buck converters," Control Engineering Practice, vol. 21, no. 3, pp. 321-332, 2013. [DOI:10.1016/j.conengprac.2012.11.006]
22. [22] T. Madani, B. Daachi, and K. Djouani, "Non-singular terminal sliding mode controller: Application to an actuated exoskeleton," Mechatronics, vol. 33, pp. 136-145, 2016. [DOI:10.1016/j.mechatronics.2015.10.012]
23. [23] L. Peng, M. Jianjun, G. Lina, and Z. Zhiqiang, "Integral terminal sliding mode control for uncertain nonlinear systems," in 2015 34th Chinese Control Conference (CCC), 2015, pp. 824-828: IEEE. [DOI:10.1109/ChiCC.2015.7259740]
24. [24] S. Wen, M. Z. Chen, Z. Zeng, X. Yu, and T. Huang, "Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 24-32, 2016. [DOI:10.1109/TSMC.2016.2564930]
25. [25] X. Lu, X. Zhang, G. Zhang, J. Fan, and S. Jia, "Neural network adaptive sliding mode control for omnidirectional vehicle with uncertainties," ISA transactions, vol. 86, pp. 201-214, 2019. [DOI:10.1016/j.isatra.2018.10.043]
26. [26] O. Mofid and S. Mobayen, "Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties," ISA transactions, vol. 72, pp. 1-14, 2018. [DOI:10.1016/j.isatra.2017.11.010]
27. [27] J. Mohammadpour and K. M. Grigoriadis, Efficient modeling and control of large-scale systems. Springer Science & Business Media, 2010. [DOI:10.1007/978-1-4419-5757-3]
28. [28] H. Huerta, A. G. Loukianov, and J. M. Cañedo, "Decentralized sliding mode block control of multimachine power systems," International journal of electrical power & energy systems, vol. 32, no. 1, pp. 1-11, 2010. [DOI:10.1016/j.ijepes.2009.06.016]
29. [29] G. Rinaldi, P. P. Menon, C. Edwards, and A. Ferrara, "Design and Validation of a Distributed Observer-Based Estimation Scheme for Power Grids," IEEE Transactions on Control Systems Technology, 2018.
30. [30] X.-G. Yan, S. K. Spurgeon, and C. Edwards, "Decentralized output feedback sliding mode control of nonlinear large-scale systems with uncertainties," Journal of optimization theory and applications, vol. 119, no. 3, pp. 597-614, 2003. [DOI:10.1023/B:JOTA.0000006691.37149.0b]
31. [31] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, "Breaking the hierarchy: Distributed control and economic optimality in microgrids," IEEE Transactions on Control of Network Systems, vol. 3, no. 3, pp. 241-253, 2015. [DOI:10.1109/TCNS.2015.2459391]
32. [32] D. Chen and D. E. Seborg, "Design of decentralized PI control systems based on Nyquist stability analysis," Journal of Process Control, vol. 13, no. 1, pp. 27-39, 2003. [DOI:10.1016/S0959-1524(02)00021-5]
33. [33] X. Du, Y. Xi, and S. Li, "Distributed model predictive control for large-scale systems," in Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), 2001, vol. 4, pp. 3142-3143: IEEE.
34. [34] Y. Fan, W. Wang, X. Jiang, and Z. Li, "Decentralized fuzzy linguistic control of multiple robotic manipulators with guaranteed global stability," Interaction Studies, vol. 20, no. 1, pp. 185-204, 2019. [DOI:10.1075/is.18008.fan]
35. [35] H. Sun, L. Hou, G. Zong, and X. Yu, "Adaptive Decentralized Neural Network Tracking Control for Uncertain Interconnected Nonlinear Systems With Input Quantization and Time Delay," IEEE transactions on neural networks and learning systems, 2019. [DOI:10.1109/TNNLS.2019.2919697]
36. [36] C. Liu, B. Jiang, R. J. Patton, and K. Zhang, "Decentralized Output Sliding-Mode Fault-Tolerant Control for Heterogeneous Multiagent Systems," IEEE transactions on cybernetics, 2019. [DOI:10.1109/TCYB.2019.2912636]
37. [37] A. Sabanovic, "Variable structure systems with sliding modes in motion control-A survey," IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 212-223, 2011. [DOI:10.1109/TII.2011.2123907]
38. [38] X. Li, M. Z. Chen, and H. Su, "Finite-time consensus of second-order multi-agent systems via a structural approach," Journal of the Franklin Institute, vol. 353, no. 15, pp. 3876-3896, 2016. [DOI:10.1016/j.jfranklin.2016.07.010]
39. [39] S. P. Bhat and D. S. Bernstein, "Geometric homogeneity with applications to finite-time stability," Mathematics of Control, Signals and Systems, vol. 17, no. 2, pp. 101-127, 2005. [DOI:10.1007/s00498-005-0151-x]
40. [40] P. A. Ioannou and J. Sun, Robust adaptive control. Courier Corporation, 2012.
41. [41] G. Rinaldi, P. P. Menon, C. Edwards, and A. Ferrara, "Variable Gains Decentralized Super-Twisting Sliding Mode Controllers for Large-Scale Modular Systems," in 2019 18th European Control Conference (ECC), 2019, pp. 3577-3582: IEEE. [DOI:10.23919/ECC.2019.8795810]
42. [42] B. C. Gruenwald, E. Arabi, T. Yucelen, A. Chakravarthy, and D. McNeely, "A decentralized adaptive control architecture for large-scale active-passive modular systems," in 2017 American Control Conference (ACC), 2017, pp. 3347-3352: IEEE. [DOI:10.23919/ACC.2017.7963464]
43. [43] S. J. Yoo, J. B. Park, and Y. H. Choi, "Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs," Automatica, vol. 45, no. 2, pp. 436-443, 2009. [DOI:10.1016/j.automatica.2008.07.019]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb