دوره 18، شماره 2 - ( مجله کنترل، جلد 18، شماره 2، تابستان 1403 )                   جلد 18 شماره 2,1403 صفحات 94-85 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

JavadiMoghaddam S, GHolamalinejad H. Real-time vehicle type recognition using a convolution and Haar wavelet pooling based classifier. JoC 2024; 18 (2) :85-94
URL: http://joc.kntu.ac.ir/article-1-990-fa.html
جوادی مقدم سیدمحمد، غلامعلی نژاد حسین. تشخیص بلادرنگ نوع خودرو با استفاده از طبقه‌بند مبتنی بر شبکه کانولوشن و ادغام موجک هار. مجله کنترل. 1403; 18 (2) :85-94

URL: http://joc.kntu.ac.ir/article-1-990-fa.html


1- دانشکده مهندسی، گروه کامپیوتر، دانشگاه بزرگمهر قائنات،قائن، خراسان جنوبی، ایران
چکیده:   (1572 مشاهده)
در سال­های اخیر، طبقه­بندی بلادرنگ نوع خودرو، به دلیل کاربردش در کنترل و تحلیل ترافیک، از موضوعات جذاب و بسیار پرکاربرد بوده ­است. با توجه به محدودیت تعداد نمونه ای آموزشی برچسب دار باکیفیت، تغییرات در وضعیت زاویه­ای خودرو و دوربین، کیفیت و وضوح تصویر، نور و شرایط آب و هوایی، دقت تشخیص از چالش های مهم در سیستم های تشخیص نوع خودرو می باشد. در این مقاله، یک شبکه­ی کانولوشن بلادرنگ جدید برای تشخیص نوع خودرو­ها با دقت بالا معرفی شده­است. در ساختار عصبی پیشنهادی، لایه­ی ادغام جدید با استفاده از تبدیل موجک هار علاوه بر کاهش ابعاد نقشه­ی ویژگی خروجی از لایه­ی کانولوشن، قابلیت استخراج ویژگی را نیز دارد. نوآوری دیگر ساختاری، استفاده از بلوک­های فشار-تحریک قبل از لایه­های کانولوشن میانی می باشد که موجب بالارفتن دقت بازشناسی می شود. علاوه براین، در الگوریتم یادگیری پس انتشار، با اصلاح روش به­روز­رسانی وزن­ها، از طریق تغییر ساختار بهینه­سازها، پایداری بیشتر شبکه و بالا­تر­رفتن دقت بازشناسی حاصل شده است. روش پیشنهادی روی دو مجموعه داده­ی IRVD و مجموعه MIO-TCD ارزیابی شده­است. نتایج ارزیابی نشان می دهند که ساختار پیشنهادی در مقایسه با ساختار­های کانولوشن رایج، از نظر معیار­های طبقه­بندی، عملکرد بهتری داشته است.
متن کامل [PDF 668 kb]   (141 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/4/8 | پذیرش: 1403/5/17 | انتشار الکترونیک پیش از انتشار نهایی: 1403/6/24 | انتشار: 1403/6/30

فهرست منابع
1. [1] C. Zhang, H. Ho, W. H. Lam, W. Ma, S. Wong, and A. H. Chow, "Lane-based estimation of travel time distributions by vehicle type via vehicle re-identification using low-resolution video images," Journal of Intelligent Transportation Systems, pp. 1-20, 2022. [DOI:10.1080/15472450.2022.2027767]
2. [2] N. Arora, Y. Kumar, R. Karkra, and M. Kumar, "Automatic vehicle detection system in different environment conditions using fast R-CNN," Multimedia Tools and Applications, vol. 81, no. 13, pp. 18715-18735, 2022. [DOI:10.1007/s11042-022-12347-8]
3. [3] N. Arora and Y. Kumar, "Automatic vehicle detection system in Day and Night Mode: challenges, applications and panoramic review," Evolutionary Intelligence, pp. 1-19, 2022. [DOI:10.1007/s12065-022-00723-0]
4. [4] M. Anandhalli, A. Tanuja, and P. Baligar, "Geometric invariant features for the detection and analysis of vehicle," Multimedia tools and applications, vol. 81, no. 23, pp. 33549-33567, 2022. [DOI:10.1007/s11042-022-12919-8]
5. [5] R. S. El-Sayed and M. N. El-Sayed, "Classification of vehicles' types using histogram oriented gradients: comparative study and modification," IAES International Journal of Artificial Intelligence, vol. 9, no. 4, p. 700, 2020. [DOI:10.11591/ijai.v9.i4.pp700-712]
6. [6] A. Thomas, P. Harikrishnan, P. Palanisamy, and V. P. Gopi, "Moving vehicle candidate recognition and classification using inception-resnet-v2," in 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), 2020: IEEE, pp. 467-472. [DOI:10.1109/COMPSAC48688.2020.0-207]
7. [7] H.-H. Jebamikyous and R. Kashef, "Autonomous vehicles perception (avp) using deep learning: Modeling, assessment, and challenges," IEEE Access, vol. 10, pp. 10523-10535, 2022. [DOI:10.1109/ACCESS.2022.3144407]
8. [8] F. C. Soon, H. Y. Khaw, J. H. Chuah, and J. Kanesan, "Semisupervised PCA convolutional network for vehicle type classification," IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8267-8277, 2020. [DOI:10.1109/TVT.2020.3000306]
9. [9] Z. Huo, Y. Xia, and B. Zhang, "Vehicle type classification and attribute prediction using multi-task RCNN," in 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2016: IEEE, pp. 564-569. [DOI:10.1109/CISP-BMEI.2016.7852774]
10. [10] S. Awang, N. M. A. N. Azmi, and M. A. Rahman, "Vehicle type classification using an enhanced sparse-filtered convolutional neural network with layer-skipping strategy," IEEE Access, vol. 8, pp. 14265-14277, 2020. [DOI:10.1109/ACCESS.2019.2963486]
11. [11] I. O. Joshua, M. O. Arowolo, M. O. Adebiyi, O. R. Oluwaseun, and K. A. Gbolagade, "Development of an Image Processing Techniques for Vehicle Classification Using OCR and SVM," in 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG), 2023, vol. 1: IEEE, pp. 1-9. [DOI:10.1109/SEB-SDG57117.2023.10124622]
12. [12] R. I. Borman, Y. Fernando, and Y. E. P. Yudoutomo, "Identification of Vehicle Types Using Learning Vector Quantization Algorithm with Morphological Features," Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 2, pp. 339-345, 2022. [DOI:10.29207/resti.v6i2.3954]
13. [13] A. Kherraki and R. El Ouazzani, "Deep convolutional neural networks architecture for an efficient emergency vehicle classification in real-time traffic monitoring," IAES International Journal of Artificial Intelligence, vol. 11, no. 1, p. 110, 2022. [DOI:10.11591/ijai.v11.i1.pp110-120]
14. [14] X. Xu, J. Wu, J. Wang, Q. Qu, Z. Tan, and M. Luo, "Materials Identification of Polarized Pulse Laser Detection Based on Sparse Autoencoder and Softmax Classifier Framework," IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-9, 2022. [DOI:10.1109/TIM.2022.3212117]
15. [15] H. Gholamalinejad and H. Khosravi, "Vehicle classification using a real-time convolutional structure based on DWT pooling layer and SE blocks," Expert Systems with Applications, vol. 183, p. 115420, 2021. [DOI:10.1016/j.eswa.2021.115420]
16. [16] E. Zhu, M. Xu, and D. C. Pi, "Vehicle Type Recognition Algorithm Based on Improved Network in Network," Complexity, vol. 2021, 2021. [DOI:10.1155/2021/6061939]
17. [17] Y. Zhou, "Vehicle image recognition using deep convolution neural network and compressed dictionary learning," Journal of Information Processing Systems, vol. 17, no. 2, pp. 411-425, 2021.
18. [18] H. Gholamalinejad and H. Khosravi, "Vehicle classification using a real-time convolutional structure based on DWT pooling layer and SE blocks," Expert systems with Applications, vol. 183, 2021. [DOI:10.1016/j.eswa.2021.115420]
19. [19] D. Misra, "Mish: A self regularized non-monotonic activation function," arXiv preprint arXiv:1908.08681, 2019.
20. [20] E. C. Seyrek and M. Uysal, "A comparative analysis of various activation functions and optimizers in a convolutional neural network for hyperspectral image classification," Multimedia Tools and Applications, pp. 1-32, 2023. [DOI:10.1007/s11042-023-17546-5]
21. [21] H. Gholamalinejad and H. Khosravi, "Whitened gradient descent, a new updating method for optimizers in deep neural networks," Journal of AI and Data Mining, vol. 10, no. 4, pp. 467-477, 2022.
22. [22] W. Wang, P. Zhang, T. Lan, and V. Aggarwal, "Datacenter net profit optimization with deadline dependent pricing," in Information Sciences and Systems (CISS), 2012 46th Annual Conference on, 2012: IEEE, pp. 1-6. [DOI:10.1109/CISS.2012.6310925]
23. [23] M. L. McHugh, "Interrater reliability: the kappa statistic," Biochemia medica: Biochemia medica, vol. 22, no. 3, pp. 276-282, 2012. [DOI:10.11613/BM.2012.031]
24. [24] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images," 2009.
25. [25] H. Gholamalinejad and H. Khosravi, "IRVD: A Large-Scale Dataset for Classification of Iranian Vehicles in Urban Streets," Journal of AI and Data Mining, pp. -, 2020, doi: 10.22044/jadm.2020.8438.1982.
26. [26] "COVID-19 CT Scan Images." https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-covid19?select=Original+CT+Scans (accessed.
27. [27] W. Ning et al., "iCTCF: an integrative resource of chest computed tomography images and clinical features of patients with COVID-19 pneumonia," 2020. [DOI:10.21203/rs.3.rs-21834/v1]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb