In this paper, the formation tracking of multi-agent systems is discussed. The model considered for each agent is linear with uncertain parameters. The effect of external disturbances is also considered in the model. To achieve predetermined time-varying formation, the required control input is presented. By applying this input, the closed-loop system will take the desired formation. Establishing the appropriate conditions for the realization of time-varying formation, and using the Lyapunov theory and the H_inf index to reduce the disturbance effect, results in some linear matrix inequalities. The designed parameter is then computed by solving those linear matrix inequalities. Finally, a simulation example is presented to illustrate the effectiveness of the designed strategy.

Type of Article: Research paper |
Subject:
Special

Received: 2019/07/26 | Accepted: 2020/06/11 | ePublished ahead of print: 2020/07/6 | Published: 2021/07/4

Received: 2019/07/26 | Accepted: 2020/06/11 | ePublished ahead of print: 2020/07/6 | Published: 2021/07/4

1. [1] C. Song, J. Cao, and Y. Liu, "Robust consensus of fractional-order multi-agent systems with positive real uncertainty via second-order neighbors information," Neurocomputing, vol. 165, pp. 293-299, 2015. [DOI:10.1016/j.neucom.2015.03.019]

2. [2] L. Zhao and Y. Jia, "Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults," Int. J. Syst. Sci., vol. 47, no. 8, pp. 1931-1942, 2016. [DOI:10.1080/00207721.2014.960906]

3. [3] R. Olfati-Saber and R. M. Murray, "Consensus problems in networks of agents with switching topology and time-delays," IEEE Trans. Automat. Contr., vol. 49, no. 9, pp. 1520-1533, 2004. [DOI:10.1109/TAC.2004.834113]

4. [4] Z. Li, W. Ren, X. Liu, and L. Xie, "Distributed consensus of linear multi-agent systems with adaptive dynamic protocols," Automatica, vol. 49, no. 7, pp. 1986-1995, Jul. 2013. [DOI:10.1016/j.automatica.2013.03.015]

5. [5] Z. Li, Z. Duan, and G. Chen, "Dynamic consensus of linear multi-agent systems," IET Control Theory Appl., vol. 5, no. 1, pp. 19-28, Jan. 2011. [DOI:10.1049/iet-cta.2009.0466]

6. [6] J. Wang, D. Cheng, and X. Hu, "Consensus of multi-agent linear dynamic systems," Asian J. Control, vol. 10, no. 2, pp. 144-155, 2008. [DOI:10.1002/asjc.15]

7. [7] W. Yu, G. Chen, M. Cao, and J. Kurths, "Second-Order Consensus for Multiagent Systems With Directed Topologies and Nonlinear Dynamics," IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 40, no. 3, pp. 881-891, Jun. 2010. [DOI:10.1109/TSMCB.2009.2031624]

8. [8] Q. Song, J. Cao, and W. Yu, "Second-order leader-following consensus of nonlinear multi-agent systems via pinning control," Syst. Control Lett., vol. 59, no. 9, pp. 553-562, Sep. 2010. [DOI:10.1016/j.sysconle.2010.06.016]

9. [9] Z. Li, W. Ren, X. Liu, and M. Fu, "Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols," IEEE Trans. Automat. Contr., vol. 58, no. 7, pp. 1786-1791, Jul. 2013. [DOI:10.1109/TAC.2012.2235715]

10. [10] Y. Zhao, Z. Duan, G. Wen, and G. Chen, "Robust consensus tracking of multi-agent systems with uncertain lur'e-type non-linear dynamics," IET Control Theory Appl., vol. 7, no. 9, pp. 1249-1260, Jun. 2013. [DOI:10.1049/iet-cta.2013.0095]

11. [11] D. Zhang, X. Wang, and L. Meng, "Consensus problems for high-order LTI systems: a decentralized static output feedback method," Int. J. Innov. Comput. Inf. Control, vol. 9, no. 5, pp. 2143-2154, 2013.

12. [12] Y. Hu, P. Li, and J. Lam, "Brief paper - Consensus of multi-agent systems: a simultaneous stabilisation approach," IET Control Theory Appl., vol. 6, no. 11, pp. 1758-1765, Jul. 2012. [DOI:10.1049/iet-cta.2011.0324]

13. [13] Z. Wang, D. Ding, H. Dong, and H. Shu, "consensus control for multi-agent systems with missing measurements: The finite-horizon case," Syst. Control Lett., vol. 62, no. 10, pp. 827-836, Oct. 2013. [DOI:10.1016/j.sysconle.2013.06.004]

14. [14] G. Zhai, S. Okuno, J. Imae, and T. Kobayashi, "Consensus algorithms for multi-agent systems: a matrix inequality based approach," in Networking, Sensing and Control, 2009. ICNSC'09. International Conference on, 2009, pp. 891-896. [DOI:10.1109/ICNSC.2009.4919398]

15. [15] G. Zhai, S. Okuno, J. Imae, and T. Kobayashi, "A new consensus algorithm for multi-agent systems via decentralized dynamic output feedback," J. Intell. Robot. Syst., vol. 63, no. 2, pp. 309-322, 2011. [DOI:10.1007/s10846-010-9458-z]

16. [16] Y. Liu and Y. Jia, "Consensus problem of high-order multi-agent systems with external disturbances: An H∞ analysis approach," Int. J. Robust Nonlinear Control, vol. 20, no. 14, pp. 1579-1593, 2010. [DOI:10.1002/rnc.1531]

17. [17] A. Amini, A. Azarbahram, and M. Sojoodi, "H∞ Consensus of nonlinear multi-agent systems using dynamic output feedback controller: an LMI approach," Nonlinear Dyn., vol. 85, no. 3, pp. 1865-1886, 2016. [DOI:10.1007/s11071-016-2801-6]

18. [18] S. Yu and X. Long, "Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode," Automatica, vol. 54, pp. 158-165, 2015. [DOI:10.1016/j.automatica.2015.02.001]

19. [19] A. Mahmood and Y. Kim, "Decentralized formation flight control of quadcopters using robust feedback linearization," J. Franklin Inst., vol. 354, no. 2, pp. 852-871, 2017. [DOI:10.1016/j.jfranklin.2016.10.039]

20. [20] S. M. Kang and H. S. Ahn, "Design and Realization of Distributed Adaptive Formation Control Law for Multi-Agent Systems with Moving Leader," IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1268-1279, 2016. [DOI:10.1109/TIE.2015.2504041]

21. [21] M. A. Dehghani and M. B. Menhaj, "Integral sliding mode formation control of fixed-wing unmanned aircraft using seeker as a relative measurement system," Aerosp. Sci. Technol., vol. 58, pp. 318-327, 2016. [DOI:10.1016/j.ast.2016.08.011]

22. [22] L. Han, X. Dong, Q. Li, and Z. Ren, "Formation-containment control for second-order multi-agent systems with time-varying delays," Neurocomputing, vol. 218, pp. 439-447, 2016. [DOI:10.1016/j.neucom.2016.09.001]

23. [23] X. Dong, Y. Zhou, Z. Ren, and Y. Zhong, "Time-Varying Formation Tracking for Second-Order Multi-Agent Systems Subjected to Switching Topologies With Application to Quadrotor Formation Flying," IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5014-5024, 2017. [DOI:10.1109/TIE.2016.2593656]

24. [24] H. Liu, T. Ma, F. L. Lewis, and Y. Wan, "Robust Formation Control for Multiple Quadrotors With Nonlinearities and Disturbances" IEEE Trans. Cybern., vol. 50, no. 4, pp. 1362 - 1371, 2020. [DOI:10.1109/TCYB.2018.2875559]

25. [25] J. Chen, Z. Shi, and Y. Zhong, "Robust formation control for uncertain multi-agent systems" J. Franklin Inst. vol. 356, no. 15, p. 8273-8254, 2019. [DOI:10.1016/j.jfranklin.2019.07.014]

26. [26] X. Dong, J. Xi, G. Lu, and Y. Zhong, "Formation control for high-order linear time-invariant multiagent systems with time delays," IEEE Trans. Control Netw. Syst., vol. 1, no. 3, pp. 232-240, 2014. [DOI:10.1109/TCNS.2014.2337972]

27. [27] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory, vol. 15. Siam, 1994. [DOI:10.1137/1.9781611970777]

28. [28] D. Meng , Y. Jia , "Robust consensus algorithms for multi-scale coordination control of multi-vehicle systems with disturbances," IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 1107-1119, 2015. [DOI:10.1109/TIE.2015.2478740]

29. [29] P. Lin, Y. Jia, and L. Li, "Distributed robust H∞ consensus control in directed networks of agents with time-delay," Syst. Control Lett., vol. 57, no. 8, pp. 643-653, 2008. [DOI:10.1016/j.sysconle.2008.01.002]

30. [30] T. Liu and Z.-P. Jiang, "Distributed formation control of nonholonomic mobile robots without global position measurements," Automatica, vol. 49, no. 2, pp. 592-600, 2013. [DOI:10.1016/j.automatica.2012.11.031]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |