Volume 18, Issue 2 (Journal of Control, V.18, N.2 Summer 2024)                   JoC 2024, 18(2): 1-12 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nadi F, Derhami V, Alamiyan Harandi F. Value Iteration based Fuzzy Reinforcement Learning in Target Following Robot. JoC 2024; 18 (2) :1-12
URL: http://joc.kntu.ac.ir/article-1-1012-en.html
1- Faculty of Computer Engineering, Yazd University, Yazd, Iran
2- Faculty of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
Abstract:   (1494 Views)
This paper presents a new method for using data collected from the agent's random movement in the environment for the initial adjustment of parameters of a controller with a fuzzy reinforcement learning structure. Slow learning speed and high failure rates during training are two major challenges in such structures. The initial parameterization of the fuzzy system can be a suitable solution to address these challenges. In this paper, the method of discrete value iteration is extended to continuous without relying on derivative based methods to initialize the parameters of the fuzzy system. First, random interaction with the environment is used to collect relevant data. Since the state space is continuous, the data is appropriately clustered and each cluster is considered as a state. Then, by generalizing the standard value iteration method to the continuous, the transition probability matrix and the immediate reward expectation matrix are calculated. Using the results of this stage, the initial parameterization of the fuzzy reinforcement learning structure is performed. Subsequently, these parameters are fine-tuned using reinforcement learning. The proposed method is called "Value Iteration based Fuzzy Reinforcement Learning" and is used in the problem of target following robots. The experimental results indicate a significant improvement in the performance of the proposed method in the problem of target following robots.  
Full-Text [PDF 796 kb]   (54 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2023/12/1 | Accepted: 2024/06/16 | ePublished ahead of print: 2024/07/28 | Published: 2024/09/20

References
1. [1] M. F. R. Lee, & Y. C. Chen, "Artificial Intelligence Based Object Detection and Tracking for a Small Underwater Robot". Processes, vol. 11, no. 2, pp. 312, 2023. [DOI:10.3390/pr11020312]
2. [2] S. Li, K. Milligan & et al., "Exploring the role of human-following robots in supporting the mobility and wellbeing of older people". Scientific Reports, vol. 13, no. 1, pp. 6512, 2023. [DOI:10.1038/s41598-023-33837-1]
3. [3] G. Thomas, R. Gade, T. B. Moeslund & et al., "Computer vision for sports: Current applications and research topics". Computer Vision and Image Understanding, vol. 159, pp. 3-18, 2017. [DOI:10.1016/j.cviu.2017.04.011]
4. [4] H. Kivrak, F. Cakmak, H. Kose & S. Yavuz, "Social navigation framework for assistive robots in human inhabited unknown environments". The International Journal Engineering Science and Technology, vol. 24, no. 2, pp. 284-298, 2021. [DOI:10.1016/j.jestch.2020.08.008]
5. [5] Tempo Walk in Clubcar. Available online: https://www.clubcar.com/en-us/golf-operations/fleet-golf/tempo-walk (accessed on 14 November 2023).
6. [6] A. Rudenko, L. Palmieri & et al., "Human motion trajectory prediction: A survey". The International Journal of Robotics Research, vol. 39, no. 8, pp. 895-935, 2020. [DOI:10.1177/0278364920917446]
7. [7] M. J. Islam, J. Hong & J. Sattar, "Person-following by autonomous robots: A categorical overview". The International Journal of Robotics Research, vol. 38, no. 14, pp. 1581-1618, 2019. [DOI:10.1177/0278364919881683]
8. [8] R. Algabri & M. T. Choi, "Deep-learning-based indoor human following of mobile robot using color feature". Sensors, vol. 20, no. 9, pp. 2699, 2020. [DOI:10.3390/s20092699]
9. [9] D. Cha & W. Chung, "Human-leg detection in 3D feature space for a person-following mobile robot using 2D LiDARs. International Journal of Precision Engineering and Manufacturing", vol. 21, pp. 1299-1307, 2020. [DOI:10.1007/s12541-020-00343-7]
10. [10] A. Eirale, M. Martini, & M. Chiaberge, "Human-centered navigation and person-following with omnidirectional robot for indoor assistance and monitoring". Robotics, vol. 11, no. 5, pp. 108, 2022. [DOI:10.3390/robotics11050108]
11. [11] J. Liu, X. Chen & et al., "A person-following method based on monocular camera for quadruped robots". Biomimetic Intelligence and Robotics, vol. 2, no. 3, 2022. [DOI:10.1016/j.birob.2022.100058]
12. [12] K. Koide, J. Miura & E. Menegatti, "Monocular person tracking and identification with on-line deep feature selection for person following robots". Robotics and Autonomous Systems, vol. 124, 2020. [DOI:10.1016/j.robot.2019.103348]
13. [13] F. Alamiyan-Harandi, V. Derhami, & F. Jamshidi, "A new feature selection method based on task environments for controlling robots". Applied Soft Computing, vol. 85, 2019. [DOI:10.1016/j.asoc.2019.105812]
14. [14] C. A. Yang & K. T. Song, "Control design for robotic human-following and obstacle avoidance using an RGB-D camera". 19th IEEE International Conference on Control, Automation and Systems (ICCAS), pp. 934-939, 2019. [DOI:10.23919/ICCAS47443.2019.8971754]
15. [15] B. J. Lee, J. Choi, C. Baek & B. T. Zhang, "Robust human following by deep Bayesian trajectory prediction for home service robots". IEEE international conference on robotics and automation (ICRA), pp. 7189-7195, 2018. [DOI:10.1109/ICRA.2018.8462969]
16. [16] B. X. Chen, R. Sahdev & J. K. Tsotsos, "Integrating stereo vision with a CNN tracker for a person-following robot". 11th International Conference on Computer Vision Systems, Springer International Publishing, pp. 300-313, 2017. [DOI:10.1007/978-3-319-68345-4_27]
17. [17] B. X. Chen, "Real-time Online Human Tracking with a Stereo Camera for Person-Following Robots", 2019.
18. [18] F. Nadi, F. Alamiyan-Harandi, V. Derhami, F. Taherizade, "Improving Performance of Target Following Robot using Visual Servoing Fuzzy Controller (In Persian), 3rd International Conference on Soft Computing, 2019.
19. [19] J. H. Choi, K. Samuel, K. Nam & S. Oh, "An autonomous human following caddie robot with high-level driving functions". Electronics, vol. 9, no. 9, pp. 1516, 2020. [DOI:10.3390/electronics9091516]
20. [20] X. Gu, J. Han, Q. Shen & P. P. Angelov, "Autonomous learning for fuzzy systems: a review". Artificial Intelligence Review, vol. 56, no. 8, pp. 7549-7595, 2023. [DOI:10.1007/s10462-022-10355-6]
21. [21] H. Hu, X. Wang & L. Chen, "Impedance with finite-time control scheme for robot-environment interaction". Mathematical Problems in Engineering, 2020. [DOI:10.1155/2020/2796590]
22. [22] J. Lin, J. Zhou, M. Lu, H. Wang & A. Yi, "Design of robust adaptive fuzzy controller for a class of single-input single-output (siso) uncertain nonlinear systems". Mathematical Problems in Engineering, pp. 1-11, 2020. [DOI:10.1155/2020/6178678]
23. [23] T. V. Nguyen, M. H. Do & J. Jo, "Robust-adaptive-behavior strategy for human-following robots in unknown environments based on fuzzy inference mechanism". Industrial Robot: the international journal of robotics research and application, vol. 49, no. 6, pp. 1089-1100, 2022. [DOI:10.1108/IR-01-2022-0009]
24. [24] N. Van Toan, M. Do Hoang, P. B. Khoi & S. Y. Yi, "The human-following strategy for mobile robots in mixed environments". Robotics and Autonomous Systems, vol. 160, 2023. [DOI:10.1016/j.robot.2022.104317]
25. [25] V. Derhami, V. J. Majd & M. N. Ahmadabadi, "Fuzzy Sarsa learning and the proof of existence of its stationary points". Asian Journal of Control, vol. 10, no. 5, pp. 535-549, 2008. [DOI:10.1002/asjc.54]
26. [26] F. Fathinezhad, V. Derhami & M. Rezaeian, "Supervised fuzzy reinforcement learning for robot navigation". Applied Soft Computing, vol. 40, pp. 33-41, 2016. [DOI:10.1016/j.asoc.2015.11.030]
27. [27] D. Song, B. Zhu, J. Zhao & et al., (2023). "Personalized Car-Following Control Based on a Hybrid of Reinforcement Learning and Supervised Learning". IEEE Transactions on Intelligent Transportation Systems, 2023. [DOI:10.1109/TITS.2023.3245362]
28. [28] F. Nadi, V. Derhami & F. Alamiyan-Harandi, "Coarse Tuning of Fuzzy Reinforcement Learning Architecture using Value Iteration Method". Fuzzy Systems and its Applications, vol. 6, no. 1, pp. 109-126, 2023.
29. [29] V. Derhami, F. Alamiyan-Harandi, & M. Dowlatshahi, "Reinforcement Learning" (In Persian), Yazd University press, 2017.
30. [30] R. S. Sutton and A. G. Barto. "Reinforcement learning: An introduction". MIT press Cambridge, 1998. [DOI:10.1109/TNN.1998.712192]
31. [31] F. Alamiyan-Harandi, V. Derhami, "A reinforcement learning algorithm for adjusting antecedent parameters and weights of fuzzy rules in a fuzzy classifier", Journal of Intelligent & Fuzzy Systems, vol. 30, no. 4, pp. 2339-2347, 2016. [DOI:10.3233/IFS-152004]
32. [32] R. A. Brooks, "A robust layered control system for a mobile robot", IEEE Journal of Robotics and Automation 2, pp. 14-23, 1986. [DOI:10.1109/JRA.1986.1087032]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb