Radome causes refraction of the incoming rardar wave in radar-guided interceptors, thus having a destabilizing effect on the guidance loop, especially at high altitudes. Therefore, a compensator is required to maintain the stability of the guidance loop and causes minimum miss distance in the presence of radome error. From the control perspective, Radome causes an unwanted feedback that is not similar to the conventional feedback loops, in which output must follow a desired control signal. In this paper, the desired closed-loop response is determined first, then a novel approach is proposed to shape the frequency response of the feedforward path so that the stability and performance requirements are satisfied . Frequency response is shaped by linear matrix inequality (LMI) tools and v-gap metric is used to select the best frequency response. Simulation results show that the designed compensator drastically decreases the miss distance, while the stability is guaranteed.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |