Volume 14, Issue 1 (Journal of Control, V.14, N.1 Spring 2020)                   JoC 2020, 14(1): 1-10 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yonesie B, Sebghati A, Shamaghdari S. Constrained Optimal PID Controller Design: Convex-Concave Optimization Approach. JoC 2020; 14 (1) :1-10
URL: http://joc.kntu.ac.ir/article-1-522-en.html
1- School of Electrical Engineering , Iran University of Science and Technology, Tehran , Iran
Abstract:   (6274 Views)
In this paper, an algorithm is proposed to improve the constrained PID control design based on the convex-concave optimization. The control system is designed by optimizing a performance cost function, taking into account the stability and efficiency constraints with frequency domain analysis in which the sensitivity and complementary sensitivity concepts are used. It is shown, using a counter example, the previous methods are not effective for some systems, the optimization problem becomes unbounded and interrupted. To solve the problem, conditions where the optimization problem fails to have a response are analyzed and the previous limitations are eliminated by representing a new designing method. The performance of the proposed scheme is shown by applying it to the counter example. Moreover, the control system is designed for an unstable system.
Full-Text [PDF 678 kb]   (1995 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2017/09/9 | Accepted: 2018/12/3 | Published: 2020/06/11

1. Wu, Hang, Weihua Su, and Zhiguo Liu, "PID controllers Design and tuning methods," In Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference, Hangzhou, China, pp. 808-813, 2014. [DOI:10.1109/ICIEA.2014.6931273]
2. J. G. Ziegler, N. B. Nichols, "Optimum settings for automatic controllers," Journal of trans. ASME vol. 64, no. 11, pp. 759-765, 1942.
3. X. Hea, T. Cuia, D. Zhanga, J. Weib, M. Wanga, Y. Yua, Q. Liua, B. Yana, D. Zhaoa, L. Yanga, "Development of an electric-driven control system for a precision planter based on a closed-loop PID algorithm" journal of Computers and Electronics in Agriculture, vol. 136, pp. 184-192, 15 April 2017. [DOI:10.1016/j.compag.2017.01.028]
4. سيدکمال الدين موسوی مشهدی، حميد يدالهي، "طراحی و ساخت سیستم اندازه‌گیری و کنترل TDS آب در سیستم‌های تصفیه آب اسمز معکوس به روش PID کلاسیک، با توانایی جبران‌سازی اثر دما بر روی اندازه‌گیری"، مجله کنترل، 1391.
5. C. E. Garcia, M. Morari, "Internal model control. 3. Multivariable control law computation and tuning guidelines," Industrial & Engineering Chemistry Process Design and Development, vol. 24, no. 2, pp. 484-494, 1985. [DOI:10.1021/i200029a044]
6. O. Garpinger, T. Hägglund, and K. J. Åström, "Criteria and trade-offs in PID design. IFAC Conference on Advances in PID Control", Brescia, Italy, P 47-52, March 2012. [DOI:10.3182/20120328-3-IT-3014.00008]
7. K. J. Åström, T. Hagglund, PID controllers: theory, design and tuning, Instrument Society of America, 2nd ed., 1995.
8. M. S. Bahavarnia, M. S. Tavazoei, "A new view to Ziegler-Nichols step response tuning method: Analytic non-fragility justification," Journal of Process Control, vol. 23, no. 1, pp. 23-33, 2012. [DOI:10.1016/j.jprocont.2012.10.012]
9. K. J. Åström, T. Hagglund, Advanced PID control, Isa, 2006.
10. T. Hgglund, K. J. Åström, "REVISITING THE ZIEGLERNICHOLS TUNING RULES FOR PI CONTROLPART II THE FREQUENCY RESPONSE METHOD," Asian Journal of Control, vol. 6, pp. 469-482, 2004. [DOI:10.1111/j.1934-6093.2004.tb00368.x]
11. حسن ذاکری، سجاد ازگلی؛" روش طراحی کنترلگر PI برای دسته‌ای از سیستم‌های غیرخطی دارای عدم قطعیت به‌کمک تجزیه‌ی مجموع مربعات"، مجله کنترل، 1391.
12. N. K. Bahgaat, M. A. M. Hassan, Load Frequency Control in Power System via Improving PID Controller Based on Particle Swarm Optimization and ANFIS Techniques, International Journal of System Dynamics Applications (IJSDA), 2014. [DOI:10.4018/ijsda.2014070101]
13. B. K. Sahu, S. Pati, P. K. Mohanty, and S. Panda, "Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system," Journal of Applied Soft Computing, vol. 27, pp. 240-249, 2014. [DOI:10.1016/j.asoc.2014.11.027]
14. E. Yesil, "Interval type-2 fuzzy PID load frequency controller using BigBang-Big Crunch optimization," Applied Soft Computing, vol. 15, pp. 100-112, 2014. [DOI:10.1016/j.asoc.2013.10.031]
15. M. J. Neath, A. K. Swain, U. K. Madawala, and D. J. Thrimawithana, "An Optimal PID Controller for a Bidirectional Inductive Power Transfer System Using Multiobjective Genetic Algorithm," IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 29, no. 3, pp. 1523-1531, 2014. [DOI:10.1109/TPEL.2013.2262953]
16. H. M. Hasanien, "Design Optimization of PID Controller in Automatic Voltage Regulator System Using Taguchi Combined Genetic Algorithm Method," IEEE SYSTEMS JOURNAL, vol. 7, pp. 825-831, 2013. [DOI:10.1109/JSYST.2012.2219912]
17. K. J. Åström, H. Panagopoulos, and T. Hägglund, "Design of PI controllers based on non-convex optimization," Automatica, vol. 34, pp. 585-601, 1998. [DOI:10.1016/S0005-1098(98)00011-9]
18. M. Hast, K.J. Åström, B. Bernhardsson, and S. Boyd, "PID Design by Convex-Concave Optimization," European Control Conference (ECC), Zürich, Switzerland, July 17-19, 2013. [DOI:10.23919/ECC.2013.6669312]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb