Volume 14, Issue 2 (Journal of Control, V.14, N.2 Summer 2020)                   JoC 2020, 14(2): 35-45 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Keymasi Khalaji A, Yazdani A. Backward and forward path following control of a wheeled robot. JoC 2020; 14 (2) :35-45
URL: http://joc.kntu.ac.ir/article-1-572-en.html
1- Kharazmi University
Abstract:   (6254 Views)

A wheeled mobile robot is one of the most important types of mobile robots. A subcategory of these robots is wheeled robots towing trailer(s). Motion control problem, especially in backward motion is one of the challenging research topics in this field. In this article, a control algorithm for path-following problem of a tractor-trailer system is provided, which at the same time provides the ability to control the backward and forward motions of the tractor-trailer robot. To this end, first the kinematic equations of a wheeled robot with a trailer is extracted and then reference paths for the robot are defined. Path following equations, in addition to the robot mathematical equations, also represent the robot movement with respect to the reference path. Then, by using transformations the system equations are expressed in a new space and subsequently a control algorithm is proposed for the system. The investigated control law make the system asymptotically stable around the reference path. Finally, obtained results have been presented which guarantee the designed controller.

Full-Text [PDF 1068 kb]   (2017 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2018/04/10 | Accepted: 2019/03/16 | Published: 2019/08/15

References
1. [1] F. Jean, The car with n trailers: characterization of the singular configurations, ESAIM: Control, Optimization and Calculus of Variations, Vol. 1, pp. 241-266, 1996. [DOI:10.1051/cocv:1996108]
2. [2] J.-P. Laumond, Controllability of a multibody mobile robot, IEEE Transactions on Robotics and Automation, Vol. 9, No. 6, pp. 755-763, 1993. [DOI:10.1109/70.265919]
3. [3] M. Michałek, Application of the VFO method to set-point control for the N-trailer vehicle with off-axle hitching, International Journal of Control, Vol. 85, No. 5, pp. 502-521, 2012. [DOI:10.1080/00207179.2012.658524]
4. [4] C. Altafini, Some properties of the general n-trailer, International Journal of Control, Vol. 74, No. 4, pp. 409-424, 2001. [DOI:10.1080/00207170010010579]
5. [5] M. Michałek, Non-minimum-phase property of N-trailer kinematics resulting from off-axle interconnections, International Journal of Control, Vol. 86, No. 4, pp. 740-758, 2013. [DOI:10.1080/00207179.2012.759662]
6. [6] C. Altafini, A. Speranzon, B. Wahlberg, A feedback control scheme for reversing a truck and trailer vehicle, IEEE Transactions on robotics and automation, Vol. 17, No. 6, pp. 915-922, 2001. [DOI:10.1109/70.976025]
7. [7] A. Astolfi, P. Bolzern, A. Locatelli, Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths: a Lyapunov-based approach, IEEE transactions on robotics and automation, Vol. 20, No. 1, pp. 154-160, 2004. [DOI:10.1109/TRA.2003.820928]
8. [8] P. Bolzern, R. M. DeSantis, A. Locatelli, D. Masciocchi, Path-tracking for articulated vehicles with off-axle hitching, IEEE Transactions on control systems technology, Vol. 6, No. 4, pp. 515-523, 1998. [DOI:10.1109/87.701346]
9. [9] C. Cariou, R. Lenain, B. Thuilot, P. Martinet, Path following of a vehicle-trailer system in presence of sliding: Application to automatic guidance of a towed agricultural implement, in Proceeding of, IEEE, pp. 4976-4981.
10. [10] F. Cuesta, F. Gómez-Bravo, A. Ollero, Parking maneuvers of industrial-like electrical vehicles with and without trailer, IEEE Transactions on Industrial Electronics, Vol. 51, No. 2, pp. 257-269, 2004. [DOI:10.1109/TIE.2004.824855]
11. [11] A. Ferrara, L. Magnani, Hybrid variable structure path tracking control of articulated vehicles, IEEE American Control Conference, Boston, USA, pp. 2777-2782, 2004. [DOI:10.23919/ACC.2004.1383886]
12. [12] P. Morin, C. Samson, Transverse function control of a class of non-invariant driftless systems. Application to vehicles with trailers, in Proceeding of, IEEE, pp. 4312-4319.
13. [13] T. Ren, N. Kwok, C. Sui, D. Wang, J. Luo, W. Su, Controller design of a truck and multiple trailer system, in Proceeding of, IEEE, pp. 294-299.
14. [14] P. Rouchon, M. Fliess, J. Levine, P. Martin, Flatness and motion planning: the car with n trailers, in Proceeding of, 1518-1522.
15. [15] C. Samson, Control of chained systems application to path following and time-varying point-stabilization of mobile robots, IEEE transactions on Automatic Control, Vol. 40, No. 1, pp. 64-77, 1995. [DOI:10.1109/9.362899]
16. [16] P. Rouchon, M. Fliess, J. Lévine, P. Martin, Flatness, motion planning and trailer systems, in Proceeding of, IEEE, pp. 2700-2705, 1993.
17. [17] J. David, P. Manivannan, Control of truck-trailer mobile robots: a survey, Intelligent Service Robotics, Vol. 7, No. 4, pp. 245-258, 2014. [DOI:10.1007/s11370-014-0152-z]
18. [18] A. Keymasi Khalaji, S. A. A. Moosavian, Stabilization of a tractor-trailer wheeled robot, Journal of Mechanical Science and Technology, Vol. 30, No. 1, pp. 421-428, 2016. [DOI:10.1007/s12206-015-1246-z]
19. [19] A. Keymasi Khalaji, S. A. A. Moosavian, Switching Control of a Tractor-Trailer Wheeled Robot, International Journal of Robotics and Automation, Vol. 30, No. 2, 2015. [DOI:10.2316/Journal.206.2015.2.206-4068]
20. [20] A. Keymasi Khalaji, S. A. A. Moosavian, Dynamic modeling and tracking control of a car with n-trailers, Multibody System Dynamics, Vol. 37, No. 2, pp. 211-225, 2016. [DOI:10.1007/s11044-015-9472-9]
21. [21] A. Khanpoor, A. Keymasi Khalaji, S. A. A. Moosavian, Modeling and control of an underactuated tractor-trailer wheeled mobile robot, Robotica, pp. 1-22, 2017. [DOI:10.1017/S0263574716000886]
22. [22] A. Keymasi Khalaji, S. A. A. Moosavian, Robust adaptive controller for a tractor-trailer mobile robot, IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 3, pp. 943-953, 2014. [DOI:10.1109/TMECH.2013.2261534]
23. [23] A. Keymasi Khalaji, S. A. A. Moosavian, Adaptive sliding mode control of a wheeled mobile robot towing a trailer, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Vol. 229, No. 2, pp. 169-183, 2015. [DOI:10.1177/0959651814550539]
24. [24] A. Keymasi Khalaji, M. Rahimi Bidgoli, S. A. A. Moosavian, Non-model-based control for a wheeled mobile robot towing two trailers, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 229, No. 1, pp. 97-108, 2015. [DOI:10.1177/1464419314550898]
25. [25] A. Keymasi Khalaji, S. A. A. Moosavian, Modified transpose Jacobian control of a tractor-trailer wheeled robot, Journal of Mechanical Science and Technology, Vol. 29, No. 9, pp. 3961-3969, 2015. [DOI:10.1007/s12206-015-0841-3]
26. [26] M. Rahimi Bidgol, A. Keymasi Khalaji and S. Ali A. Moosavian, Trajectory tracking control of a wheeled mobile robot by a non-model-based control algorithm using PD-action filtered errors, Journal of Modares Mechanical Engineering, Vol. 14, No. 12, pp. 171-178, 2014. (In Persian)
27. [27] J. L. Martínez, J. Morales, A. Mandow, A. García-Cerezo, Steering limitations for a vehicle pulling passive trailers, IEEE Transactions on Control Systems Technology, Vol. 16, No. 4, pp. 809-818, 2008. [DOI:10.1109/TCST.2007.916293]
28. [28] J. Stergiopoulos, S. Manesis, Anti-jackknife state feedback control law for nonholonomic vehicles with trailer sliding mechanism, International Journal of Systems, Control and Communications, Vol. 1, No. 3, pp. 297-311, 2009. [DOI:10.1504/IJSCC.2009.024557]
29. [29] L. Chen, Y. Shieh, Jackknife prevention for articulated vehicles using model reference adaptive control, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 225, No. 1, pp. 28-42, 2011. [DOI:10.1243/09544070JAUTO1513]
30. [30] F. Lamiraux, J.-P. Laumond, A practical approach to feedback control for a mobile robot with trailer, in Proceeding of, IEEE, pp. 3291-3296.
31. [31] J. Cheng, Y. Zhang, S. Hou, B. Song, Stabilization control of a backward tractor-trailer mobile robot, IEEE World Congress on Intelligent Control and Automation, pp. 2136-2141, Jinan, China, 2010. [DOI:10.1109/WCICA.2010.5554359]
32. [32] W.-J. Chang, P.-H. Chen, Stabilization for truck-trailer mobile robot system via discrete LPV TS fuzzy models, in: Intelligent Autonomous Systems 12, Eds., pp. 209-217: Springer, 2013. [DOI:10.1007/978-3-642-33926-4_20]
33. [33] O. Lefebvre, F. Lamiraux, Localization and trajectory following for multi-body wheeled mobile robots, IEEE International Conference on Robotics and Automation, pp. 3086-3091, Roma, Italy, 2007. [DOI:10.1109/ROBOT.2007.363941]
34. [34] A. Keymasi Khalaji, S. A. A. Moosavian, M. R. Bidgoli, Trajectory tracking control law for a tractor-trailer wheeled mobile robot, in Proceeding of Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 767-772, 2014. [DOI:10.1109/ICRoM.2014.6990996]
35. [35] K. Yoo, W. Chung, Pushing motion control of n passive off-hooked trailers by a car-like mobile robot, in Proceeding of, IEEE International Conference on Robotics and Automation (ICRA), pp. 4928-4933.
36. [36] A. Keymasi Khalaji, Formation control of a differential drive wheeled robot in trajectory tracking, Journal of Modares Mechanical Engineering, Vol. 16, No. 11, pp. 103-112, 2017. (In Persian)
37. [37] A. Khanpoor, A. Keymasi Khalaji and S. Ali A. Moosavian, Dynamics and Control of a Wheeled Mobile Robot Attached by a Trailer with Passive Spherical Wheels, Journal of Modares Mechanical Engineering, Vol. 15, No. 8, pp. 216-224, 2015. (In Persian)
38. [38] A. Keymasi Khalaji and S. Ali A. Moosavian, Non-Model-Based Control Law for a Wheeled Robot Towing a Trailer, Journal of Control, Vol. 7, No. 2, pp.1-10, 2013 (In Persian).

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb