1. [ ] Savran A, Çiftçi K, Chanel G, Rombaut M. Emotion Detection in the Loop from Brain Signals and Facial Images. Proceedings of the eNTERFACE; 2066 Jul 11- 17; Dubrovnik, Croatia: 2006.
2. [2] Chen L, Mao X, Xue Y, Cheng LL. Speech emotion recognition: Features and classification models. Digital Signal Processing 2012;22(6):1154-60. [
DOI:10.1016/j.dsp.2012.05.007]
3. [3] Zheng WL, Zhu JY, Lu BL. Identifying stable patterns over time for emotion recognition from EEG. IEEE Transactions on Affective Computing; IEEE; 2017.
4. [4] N .Sebe , et al. "Multimodal approaches for emotion recognition: a survey." Internet Imaging VI. Vol. 5670. International Society for Optics and Photonics, (2005). [
DOI:10.1117/12.600746]
5. [5] D.Oude Bos, "EEG-based emotion recognition-The Influence of Visual and Auditory Stimuli." Capita Selecta (MSc course),(2006)..
6. [6] J.Gratch, and S. Marsella. "A domain-independent framework for modeling emotion." Cognitive Systems Research5.4: 269-306, (2004). [
DOI:10.1016/j.cogsys.2004.02.002]
7. [7] M.Grimm, and K. Kroschel. "Rule-based emotion classification using acoustic features." in Proc. Int. Conf. on Telemedicine and Multimedia Communication.( 2005).
8. [8] Y.Dai, et al. "Sparsity constrained differential evolution enabled feature-channel-sample hybrid selection for daily-life EEG emotion recognition." Multimedia Tools and Applications: 1-28, (2018). [
DOI:10.1007/s11042-018-5618-0]
9. [9] F.Ren ,Y.Dong, and Wei Wang. "Emotion recognition based on physiological signals using brain asymmetry index and echo state network." Neural Computing and Applications,1-11, (2018). [
DOI:10.1007/s00521-018-3664-1]
10. [10] H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the" echo state network" approach. Vol. 5. Bonn: GMD-Forschungszentrum Informationstechnik, (2002).
11. [11] M. Li, et al. "Emotion recognition from multichannel EEG signals using K-nearest neighbor classification." Technology and Health Care Preprint (2018): 1-11. [
DOI:10.3233/THC-174836]
12. [12] Z.Mohammadi, J. Frounchi, and M. Amiri. "Wavelet-based emotion recognition system using EEG signal." Neural Computing and Applications 28.8: 1985-1990, (2017). [
DOI:10.1007/s00521-015-2149-8]
13. [13] A R.Subhani, et al. "MRMR based feature selection for the classification of stress using EEG." Sensing Technology (ICST), 2017 Eleventh International Conference on. IEEE, (2017). [
DOI:10.1109/ICSensT.2017.8304499]
14. [14] Atkinson, John, and Daniel Campos. "Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers." Expert Systems with Applications 47 (2016): 35-41. [
DOI:10.1016/j.eswa.2015.10.049]
15. [15] Yan, Yixin, Chenyang Li, and Shaoliang Meng. "Emotion recognition based on sparse learning feature selection method for social communication." Signal, Image and Video Processing (2019): 1-5. [
DOI:10.1007/s11760-019-01448-x]
16. [16] M.Siems, et al. "Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG." NeuroImage 129: 345-355, (2016). [
DOI:10.1016/j.neuroimage.2016.01.055]
17. [17] J.Gao, W.Wang, and Ji Zhang. "Explore interregional EEG correlations changed by sport training using feature selection." Computational intelligence and neuroscience 2016: 30, (2016). [
DOI:10.1155/2016/6184823]
18. [18] E.Kroupi, A. Yazdani, and T. Ebrahimi. "EEG correlates of different emotional states elicited during watching music videos." Affective Computing and Intelligent Interaction. Springer, Berlin, Heidelberg. 457-466,(2011). [
DOI:10.1007/978-3-642-24571-8_58]
19. [19] L.Piho, and T. Tjahjadi. "A mutual information based adaptive windowing of informative EEG for emotion recognition." IEEE Transactions on Affective Computing,(2018).
20. [20] M.Wang, et al. "Anxiety Level Detection Using BCI of Miner's Smart Helmet." Mobile Networks and Applications 23.2: 336-343, (2018). [
DOI:10.1007/s11036-017-0935-5]
21. [21] V. Bajaj, S. Taran, and A. Sengur. "Emotion classification using flexible analytic wavelet transform for electroencephalogram signals." Health information science and systems 6.1: 12, (2018). [
DOI:10.1007/s13755-018-0048-y]
22. [22] N.Zhuang, et al. "Emotion recognition from EEG signals using multidimensional information in EMD domain." BioMed research international 2017 (2017). [
DOI:10.1155/2017/8317357]
23. [23] Rayatdoost, Soheil, and Mohammad Soleymani. "Cross-Corpus EEG-based emotion recognition." 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2018. [
DOI:10.1109/MLSP.2018.8517037]
24. [24] B.Zhang , E. M.Provost, & G.Essl, (2016, March). Cross-corpus acoustic emotion recognition from singing and speaking: A multi-task learning approach. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5805-5809). IEEE. [
DOI:10.1109/ICASSP.2016.7472790]
25. [25] R.Xia , & Y.Liu, (2015). A multi-task learning framework for emotion recognition using 2D continuous space. IEEE Transactions on affective computing, 8(1), 3-14. [
DOI:10.1109/TAFFC.2015.2512598]
26. [26] B.Zhang , E. M.Provost, & G.Essl, (2017). Cross-corpus acoustic emotion recognition with multi-task learning: Seeking common ground while preserving differences. IEEE Transactions on Affective Computing, 10(1), 85-99. [
DOI:10.1109/TAFFC.2017.2684799]
27. [27] C.Wang, J.Zeng, S.Shan, & X.Chen, (2019, September). Multi-Task Learning of Emotion Recognition and Facial Action Unit Detection with Adaptively Weights Sharing Network. In 2019 IEEE International Conference on Image Processing (ICIP) (pp. 56-60). IEEE. [
DOI:10.1109/ICIP.2019.8802914]
28. [28] D.Le, Z.Aldeneh , & E. M.Provost, (2017, August). Discretized Continuous Speech Emotion Recognition with Multi-Task Deep Recurrent Neural Network. In Interspeech (pp. 1108-1112). [
DOI:10.21437/Interspeech.2017-94]
29. [29] M.Correa, J.Abdon, and Ioannis Patras. ( 2018) "A multi-task cascaded network for prediction of affect, personality, mood and social context using eeg signals." 13th IEEE International Conference on Automatic Face & Gesture Recognition.
30. [30] H. Sunhee, et al. 2020,"Subject-Independent EEG-based Emotion Recognition using Adversarial Learning." 2020 8th International Winter Conference on Brain-Computer Interface (BCI). IEEE.
31. [31] Yang, F., Zhao, X., Jiang, W., Gao, P., & Liu, G. (2019). Multi-method fusion of cross-subject emotion recognition based on high-dimensional EEG features. Frontiers in computational neuroscience, 13. [
DOI:10.3389/fncom.2019.00053]
32. [32] H .Janati, T. Bazeille , B.Thirion, (2020). Multi-subject MEG/EEG source imaging with sparse multi-task regression. NeuroImage, 116847. [
DOI:10.1016/j.neuroimage.2020.116847]
33. [33] Y.Song, D .Wang, K.Yue,. (2019, July). EEG-Based Motor Imagery Classification with Deep Multi-Task Learning. In 2019 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE. [
DOI:10.1109/IJCNN.2019.8852362]
34. [34] G.Chanel, et al. "Emotion assessment: Arousal evaluation using EEG's and peripheral physiological signals." International workshop on multimedia content representation, classification and security. Springer, Berlin, Heidelberg, 2006. [
DOI:10.1007/11848035_70]
35. [35] G.Obozinski, B. Taskar, and M. Jordan. "Multi-task feature selection." Statistics Department, UC Berkeley, Tech. Rep 2 (2006).
36. [36] A .Beck and M.Teboulle. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems." SIAM journal on imaging sciences 2.1: 183-202, (2009). [
DOI:10.1137/080716542]
37. [37] S.Katsigiannis, and N. Ramzan. "DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices." IEEE journal of biomedical and health informatics 22.1: 98-107, (2018). [
DOI:10.1109/JBHI.2017.2688239]
38. [38] Koelstra, Sander, et al. "Deap: A database for emotion analysis; using physiological signals." IEEE transactions on affective computing 3.1 (2012): 18-31. [
DOI:10.1109/T-AFFC.2011.15]
39. [39] S.Tripathi, S.Acharya , R. D.Sharma, S.Mittal , & S. Bhattacharya (2017, February). Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset. In Twenty-Ninth IAAI Conference.
40. [40] S.Alhagry, A. A.Fahmy, & R. A. El-Khoribi (2017). Emotion recognition based on EEG using LSTM recurrent neural network. Emotion, 8(10), 355-358. [
DOI:10.14569/IJACSA.2017.081046]
41. [41] M. L. R.Menezes, A.Samara, L.Galway, A.Sant'Anna. (2017). Towards emotion recognition for virtual environments: an evaluation of eeg features on benchmark dataset. Personal and Ubiquitous Computing, 21(6), 1003-1013. [
DOI:10.1007/s00779-017-1072-7]
42. [42] J.Atkinson, & D.Campos, (2016). Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Systems with Applications, 47, 35-41. [
DOI:10.1016/j.eswa.2015.10.049]
43. [43] Song, Tengfei, et al. "EEG emotion recognition using dynamical graph convolutional neural networks." IEEE Transactions on Affective Computing (2018).
44. [44] P.Arnau-Gonzalez, S.Katsigiannis, N.Ramzan, D.Tolson, & M. Arevalillo-Herrez, (2017, October). ES1D: A deep network for EEG-based subject identification. In 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 81-85). IEEE. [
DOI:10.1109/BIBE.2017.00-74]
45. [45] Zhang, Tong, et al. "GCB-Net: Graph convolutional broad network and its application in emotion recognition." IEEE Transactions on Affective Computing (2019). [
DOI:10.1109/TAFFC.2019.2937768]
46. [46] R.Jenke, A. Peer, and M. Buss. "Feature extraction and selection for emotion recognition from EEG." IEEE Transactions on Affective Computing 5.3: 327-339, (2014). [
DOI:10.1109/TAFFC.2014.2339834]
47. [47] W. Zheng, (2016). Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis. IEEE Transactions on Cognitive and Developmental Systems, 9(3), 281-290. [
DOI:10.1109/TCDS.2016.2587290]
48. [48] N. Zheng, Y. Zeng, L. Tong, C. Zhang, H. Zhang, & B. Yan, (2017). Emotion recognition from EEG signals using multidimensional information in EMD domain. BioMed research international, 2017. [
DOI:10.1155/2017/8317357]
49. [49] B. Nakisa, M. Rastgoo, N. D.Tjondronegoro, & V. Chandran, (2018). Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Systems with Applications, 93, 143-155. [
DOI:10.1016/j.eswa.2017.09.062]
50. [50] J. Zhang, M. Chen, S. Zhao, S. Hu, Z. Shi, & Y. Cao, (2016). ReliefF-based EEG sensor selection methods for emotion recognition. Sensors, 16(10), 1558. [
DOI:10.3390/s16101558]
51. [51]M.Robnik-Šikonja and I. Kononenko. "Theoretical and empirical analysis of ReliefF and RReliefF." Machine learning53.1-2: 23-69,(2003). [
DOI:10.1023/A:1025667309714]
52. [52] Schuller, B., et al., Cross-corpus acoustic emotion recognition: Variances and strategies. IEEE Transactions on Affective Computing, 2010. 1(2): p. 119-131. [
DOI:10.1109/T-AFFC.2010.8]