1. [1] B. A. Conway, Spacecraft trajectory optimization. Cambridge University Press, 2010. [
DOI:10.1017/CBO9780511778025]
2. [2] A. V. Rao, "Trajectory optimization: a survey," in Optimization and optimal control in automotive systems: Springer, 2014, pp. 3-21. [
DOI:10.1007/978-3-319-05371-4_1]
3. [3] S. N. Ha, "A nonlinear shooting method for two-point boundary value problems," Computers & Mathematics with Applications, vol. 42, no. 10-11, pp. 1411-1420, 2001. [
DOI:10.1016/S0898-1221(01)00250-4]
4. [4] R. W. Holsapple, "A modified simple shooting method for solving two-point boundary value problems", Texas Tech University, 2003.
5. [5] M. A. Patterson and A. V. Rao, "GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming," ACM Transactions on Mathematical Software (TOMS), vol. 41, no. 1, pp. 1-37, 2014, doi: 10.1145/2558904. [
DOI:10.1145/2558904]
6. [6] W. Roh and Y. Kim, "Trajectory optimization for a multi-stage launch vehicle using time finite element and direct collocation methods," Engineering optimization, vol. 34, no. 1, pp. 15-32, 2002. [
DOI:10.1080/03052150210912]
7. [7] F. Liu, T. Chao, S. Wang, and M. Yang, "Trajectory optimization for launch vehicle boost phase based on Gauss Pseudospectral Method," in 2016 35th Chinese Control Conference (CCC), 2016: IEEE, pp. 10910-10914. [
DOI:10.1109/ChiCC.2016.7555082]
8. [8] Z. Wang and Z. Wu, "Six-DOF trajectory optimization for reusable launch vehicles via Gauss Pseudospectral method", Journal of Systems Engineering and Electronics, vol. 27, no. 2, pp. 434-441, 2016. [
DOI:10.1109/JSEE.2016.00044]
9. [9] R. Padhi and M. Kothari, "Model predictive static programming: a computationally efficient technique for suboptimal control design," International journal of innovative computing, information and control, vol. 5, no. 2, pp. 399-411, 2009.
10. [10] f. Tavakkoli and A. Novinzadeh, "closed loop suboptimal guidance design for satellite launch vehicle(in Persian)," Journal of Modarres Mechanical Engineering, vol. 17, no. 9, pp. 97-106, 1396.
11. [11] G. Klančar and I. Škrjanc, "Tracking-error model-based predictive control for mobile robots in real time," Robotics and autonomous systems, vol. 55, no. 6, pp. 460-469, 2007. [
DOI:10.1016/j.robot.2007.01.002]
12. [12] H. Yang, M. Guo, Y. Xia, and L. Cheng, "Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints," IET Control Theory & Applications, vol. 12, no. 2, pp. 206-214, 2017. [
DOI:10.1049/iet-cta.2017.0395]
13. [13] J. A. Primbs, "The analysis of optimization based controllers," Automatica, vol. 37, no. 6, pp. 933-938, 2001. [
DOI:10.1016/S0005-1098(01)00036-X]
14. [14] L. Grüne, "Economic receding horizon control without terminal constraints," Automatica, vol. 49, no. 3, pp. 725-734, 2013. [
DOI:10.1016/j.automatica.2012.12.003]
15. [15] H. Michalska and D. Q. Mayne, "Robust receding horizon control of constrained nonlinear systems," IEEE transactions on automatic control, vol. 38, no. 11, pp. 1623-1633, 1993. [
DOI:10.1109/9.262032]
16. [16] M. Tanaskovic, L. Fagiano, R. Smith, and M. Morari, "Adaptive receding horizon control for constrained MIMO systems," Automatica, vol. 50, no. 12, pp. 3019-3029, 2014. [
DOI:10.1016/j.automatica.2014.10.036]
17. [17] T. A. Johansen, "Approximate explicit receding horizon control of constrained nonlinear systems," Automatica, vol. 40, no. 2, pp. 293-300, 2004. [
DOI:10.1016/j.automatica.2003.09.021]
18. [18] V. T. Minh and N. Afzulpurkar, "Robust model predictive control for input saturated and softened state constraints," Asian Journal of Control, vol. 7, no. 3, pp. 319-325, 2005. [
DOI:10.1111/j.1934-6093.2005.tb00241.x]
19. [19] Y. I. Lee and B. Kouvaritakis, "Robust receding horizon predictive control for systems with uncertain dynamics and input saturation," Automatica, vol. 36, no. 10, pp. 1497-1504, 2000. [
DOI:10.1016/S0005-1098(00)00064-9]
20. [20] W. H. Kwon and S. H. Han, Receding horizon control: model predictive control for state models. Springer Science & Business Media, 2006.
21. [21] N. O. Ghahramani and F. Towhidkhah, "Constrained incremental predictive controller design for a flexible joint robot," ISA transactions, vol. 48, no. 3, pp. 321-326, 2009. [
DOI:10.1016/j.isatra.2009.01.010]
22. [22] R. Padhi, "Model predictive static programming: A promising technique for optimal missile guidance," To appear in Annals of Indian National Academy of Engineering (INAE), 2008.
23. [23] P. Kumar and R. Padhi, "Extension of model predictive static programming for reference command tracking," IFAC Proceedings Volumes, vol. 47, no. 1, pp. 855-861, 2014. [
DOI:10.3182/20140313-3-IN-3024.00174]
24. [24] S. Blažič, "A novel trajectory-tracking control law for wheeled mobile robots," Robotics and Autonomous Systems, vol. 59, no. 11, pp. 1001-1007, 2011. [
DOI:10.1016/j.robot.2011.06.005]
25. [25] F. Künhe, J. Gomes, and W. Fetter, "Mobile robot trajectory tracking using model predictive control," in II IEEE Latin-American robotics symposium, 2005, vol. 51: Citeseer.
26. [26] V. Nevistić and J. A. Primbs, "Finite receding horizon linear quadratic control: A unifying theory for stability and performance analysis," 1997.
27. [27] J. A. Primbs and V. Nevistić, "Constrained finite receding horizon linear quadratic control," in "Technical Report CIT-CDS," California Institute of Technology, 1997.
28. [28] M. Morari and J. H. Lee, "Model predictive control: past, present and future," Computers & Chemical Engineering, vol. 23, no. 4-5, pp. 667-682, 1999. [
DOI:10.1016/S0098-1354(98)00301-9]
29. [29] W. Kwon and A. Pearson, "A modified quadratic cost problem and feedback stabilization of a linear system," IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 838-842, 1977. [
DOI:10.1109/TAC.1977.1101619]
30. [30] J. B. Rawlings and K. R. Muske, "The stability of constrained receding horizon control," IEEE transactions on automatic control, vol. 38, no. 10, pp. 1512-1516, 1993. [
DOI:10.1109/9.241565]