Volume 15, Issue 2 (Journal of Control, V.15, N.2 Summer 2021)                   JoC 2021, 15(2): 51-68 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehdipour H, Moosapour S, keramatzadeh M. Construction, Modelling and control of an experimental helicopter (TRMS). JoC. 2021; 15 (2) :51-68
URL: http://joc.kntu.ac.ir/article-1-736-en.html
1- Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran,
Abstract:   (6349 Views)
In this paper, a two-input two-output experimental TRMS model ‎helicopter is designed and built to investigate and test different identification and control algorithms. First, the steps required (software and hardware) to design, build, and operate this two-degree-of-freedom system are stated. Then, laboratory system is identified and modeled using physical laws governing the system and their analysis, as well as with the determination method and some classical identification methods to determine the parameters, and a highly nonlinear dynamic with interaction effect for the system is achieved. In addition, the two-input two-output system is transformed into two decoupled single-input single-output subsystems and each PID controller is individually designed for a subsystem. Also, considering the interaction effect for the two-input two-output system, a PID controller is designed and implemented using Sequential loop closing (SLC) method. For validation, the practical results of the implementation are compared with the simulation results in Matlab software. The results show the validity of the extracted model as well as the effective performance of the controller.
Full-Text [PDF 3385 kb]   (21 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2020/02/6 | Accepted: 2020/09/29 | ePublished ahead of print: 2020/10/20 | Published: 2021/07/4

1. [1] F. Instruments, "Twin Rotor MIMO System 33-007-PCI," ed: Crowborough, 2013.
2. [2] R. Rashad, A. El-Badawy, and A. Aboudonia, "Sliding mode disturbance observer-based control of a twin rotor MIMO system," ISA transactions, vol. 69, pp. 166-174, 2017. [DOI:10.1016/j.isatra.2017.04.013]
3. [3] A. Bayrak, F. Dogan, E. Tatlicioglu, and B. Ozdemirel, "Design of an experimental twin‐rotor multi‐input multi‐output system," Computer Applications in Engineering Education, vol. 23, no. 4, pp. 578-586, 2015. [DOI:10.1002/cae.21628]
4. [4] A. Rahideh and M. Shaheed, "Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 221, no. 1, pp. 89-101, 2007. [DOI:10.1243/09596518JSCE292]
5. [5] P. Chalupa, J. Přikryl, and J. Novák, "Modelling of twin rotor MIMO system," Procedia Engineering, vol. 100, pp. 249-258, 2015. [DOI:10.1016/j.proeng.2015.01.365]
6. [6] A. Rahideh and M. H. Shaheed, "Dynamic modelling of a twin rotor MIMO system using grey box approach," in 2008 5th International Symposium on Mechatronics and Its Applications, 2008: IEEE, pp. 1-6. [DOI:10.1109/ISMA.2008.4648835]
7. [7] F. Aldebrez, I. M. Darus, and M. Tokhi, "Dynamic modelling of a twin rotor system in hovering position," in First International Symposium on Control, Communications and Signal Processing, 2004., 2004: IEEE, pp. 823-826.
8. [8] A. Tastemirov, A. Lecchini-Visintini, and R. M. Morales-Viviescas, "Complete dynamic model of the Twin Rotor MIMO System (TRMS) with experimental validation," Control Engineering Practice, vol. 66, pp. 89-98, 2017. [DOI:10.1016/j.conengprac.2017.06.009]
9. [9] م. ش. پ. ق. نیا "باز طراحی دیجیتالی سیستم کنترل یک هلیکوپتر آزمایشگاهی"، پایان نامه فارسی، سامانه گنج، دانشگاه آزاد اسلامی واحد سمنان، 1389.
10. [10] س. ناطق، "کنترل فازی هلیکوپتر آزمایشگاهی به کمک تئوری لیاپانوف نایکنوا" پایان نامه فارسی، سامانه گنج، دانشگاه خواجه نصیرالدین طوسی، 1392.
11. [11] P. Wen and T.-W. Lu, "Decoupling control of a twin rotor MIMO system using robust deadbeat control technique," IET Control Theory & Applications, vol. 2, no. 11, pp. 999-1007, 2008. [DOI:10.1049/iet-cta:20070335]
12. [12] J.-G. Juang, M.-T. Huang, and W.-K. Liu, "PID control using presearched genetic algorithms for a MIMO system," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 5, pp. 716-727, 2008. [DOI:10.1109/TSMCC.2008.923890]
13. [13] E.-S. M. Ahmed and M. A.-E. Mohamed, "PID controller tuning scheme for twin rotor multi-input multi-output system based particle swarm optimization approach," Journal of Engineering Sciences, vol. 37, no. 4, pp. 955-967, 2009. [DOI:10.21608/jesaun.2009.127764]
14. [14] J.-G. Juang, W.-K. Liu, and R.-W. Lin, "A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation," ISA transactions, vol. 50, no. 4, pp. 609-619, 2011. [DOI:10.1016/j.isatra.2011.06.006]
15. [15] O. W. Abdulwahhab and N. H. Abbas, "A new method to tune a fractional-order PID controller for a twin rotor aerodynamic system," Arabian Journal for Science and Engineering, vol. 42, no. 12, pp. 5179-5189, 2017. [DOI:10.1007/s13369-017-2629-5]
16. [16] B. B. Alagoz, A. Ates, and C. Yeroglu, "Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control," Mechatronics, vol. 23, no. 7, pp. 789-797, 2013. [DOI:10.1016/j.mechatronics.2013.05.001]
17. [17] D. Sain, S. K. Swain, A. Saha, S. K. Mishra, and S. Chakraborty, "Real-Time Performance Analysis of FOI-PD Controller for Twin Rotor MIMO System," IETE Technical Review, vol. 36, no. 6, pp. 547-567, 2019. [DOI:10.1080/02564602.2018.1528190]
18. [18] C.-W. Tao, J.-S. Taur, Y.-H. Chang, and C.-W. Chang, "A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-input-multi-output system," IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 893-905, 2010. [DOI:10.1109/TFUZZ.2010.2051447]
19. [19] S. Mondal and C. Mahanta, "Adaptive second-order sliding mode controller for a twin rotor multi-input-multi-output system," IET Control Theory & Applications, vol. 6, no. 14, pp. 2157-2167, 2012. [DOI:10.1049/iet-cta.2011.0478]
20. [20] J. K. Pradhan and A. Ghosh, "Design and implementation of decoupled compensation for a twin rotor multiple-input and multiple-output system," IET Control Theory & Applications, vol. 7, no. 2, pp. 282-289, 2013. [DOI:10.1049/iet-cta.2012.0162]
21. [21] C.-W. Tao, J.-S. Taur, and Y. Chen, "Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system," Fuzzy Sets and Systems, vol. 161, no. 15, pp. 2081-2103, 2010. [DOI:10.1016/j.fss.2009.12.007]
22. [22] A. Rahideh and M. H. Shaheed, "Stable model predictive control for a nonlinear system," Journal of the Franklin Institute, vol. 348, no. 8, pp. 1983-2004, 2011. [DOI:10.1016/j.jfranklin.2011.05.015]
23. [23] ا. اوکینژاد، "طراحی کنترل کننده مدلغزشی ترمینال چندمتغیره هوشمند برای سیستم " Twin Roto، پایان نامه فارسی، سامانه گنج، دانشگاه صنعتی نوشیروانی بابل، 1395.
24. [24] ح. فردوسی، "مدل سازي و کنترل سيستم ‏‎ TRMSبا استفاده از منطق فازي و ANFIS ‏‎,"پایان نامه فارسی، سامانه گنج، دانشگاه صنعتی اصفهان، 1389.
25. [25] خ. ص. علی، تحلیل و طراحی سیستم‌های کنترل چند متغیره. تهران: دانشگاه صنعتی خواجه نصیر الدین طوسی، 1394.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb