1. [1] S. Darvishpoor, J. Roshanian, A. Raissi, and M. Hassanalian, "Configurations, flight mechanisms, and applications of unmanned aerial systems: A review," Prog. Aerosp. Sci., vol. 121, p. 100694, Feb. 2020, doi: 10.1016/j.paerosci.2020.100694. [
DOI:10.1016/j.paerosci.2020.100694]
2. [2] S. Darvishpoor and J. Roshanian, "A Survey on Unmanned Aerial Vehicles : Scheme Approach," in The 18th International Conference of Iranian Aerospace Society, 2020.
3. [3] M. Hassanalian and A. Abdelkefi, "Classifications, applications, and design challenges of drones: A review," Prog. Aerosp. Sci., vol. 91, pp. 99-131, May 2017, doi: 10.1016/j.paerosci.2017.04.003. [
DOI:10.1016/j.paerosci.2017.04.003]
4. [4] S. Darvishpoor, J. Roshanian, and M. Tayefi, "A novel concept of VTOL bi-rotor UAV based on moving mass control," Aerosp. Sci. Technol., p. 106238, Sep. 2020, doi: 10.1016/j.ast.2020.106238. [
DOI:10.1016/j.ast.2020.106238]
5. [5] J. Li, C. Gao, C. Li, and W. Jing, "A survey on moving mass control technology," Aerosp. Sci. Technol., vol. 82-83, no. September, pp. 594-606, 2018, doi: 10.1016/j.ast.2018.09.033. [
DOI:10.1016/j.ast.2018.09.033]
6. [6] H. Mohammadi Daniali, "Fast Nonlinear Model Predictive Control of Quadrotors: Design and Experiments," 2020, [Online]. Available: http://hdl.handle.net/10012/15519. [
DOI:10.32393/csme.2020.1180]
7. [7] E. D'Amato, M. Mattei, and I. Notaro, "Distributed Reactive Model Predictive Control for Collision Avoidance of Unmanned Aerial Vehicles in Civil Airspace," J. Intell. Robot. Syst., vol. 97, no. 1, pp. 185-203, Jan. 2020, doi: 10.1007/s10846-019-01047-5. [
DOI:10.1007/s10846-019-01047-5]
8. [8] A. Dixit, A. Misra, and S. E. Talole, "Model Predictive Control based Collision Avoidance Controller for Octocopter," in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Feb. 2020, pp. 630-635, doi: 10.1109/SPIN48934.2020.9071236. [
DOI:10.1109/SPIN48934.2020.9071236]
9. [9] Y. Wang, H. Cai, J. Zhang, and X. Li, "Disturbance Attenuation Predictive Optimal Control for Quad-Rotor Transporting Unknown Varying Payload," IEEE Access, vol. 8, pp. 44671-44686, 2020, doi: 10.1109/ACCESS.2020.2977681. [
DOI:10.1109/ACCESS.2020.2977681]
10. [10] D. Bhattacharjee and K. Subbarao, "Robust Control Strategy for Quadcopters using Sliding Mode Control and Model Predictive Control," in AIAA Scitech 2020 Forum, Jan. 2020, doi: 10.2514/6.2020-2071. [
DOI:10.2514/6.2020-2071]
11. [11] N. Miladi, H. Dimassi, S. Hadj Said, and F. M'Sahli, "Explicit nonlinear model predictive control tracking control based on a sliding mode observer for a quadrotor subject to disturbances," Trans. Inst. Meas. Control, vol. 42, no. 2, pp. 214-227, Jan. 2020, doi: 10.1177/0142331219865816. [
DOI:10.1177/0142331219865816]
12. [12] S. Darvishpoor, J. Roshanian, and T. Yasini, "Model Predictive Control Based on Intelligent model for Low Earth Orbit Satellite," J. Technol. Aerosp. Eng., vol. 5, no. 1, 2021.
13. [13] T. Haus, M. Orsag, and S. Bogdan, "Design considerations for a large quadrotor with moving mass control," 2016 Int. Conf. Unmanned Aircr. Syst. ICUAS 2016, pp. 1327-1334, 2016, doi: 10.1109/ICUAS.2016.7502680. [
DOI:10.1109/ICUAS.2016.7502680]
14. [14] D. Bertsekas, A. Nedic, and A. E. Ozdaglar, "Convex Analysis and Optimization."
15. [15] C. Schmid and L. T. Biegler, "Quadratic programming methods for reduced hessian SQP," Comput. Chem. Eng., vol. 18, no. 9, pp. 817-832, Sep. 1994, doi: 10.1016/0098-1354(94)E0001-4. [
DOI:10.1016/0098-1354(94)E0001-4]