1. N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei et al., "Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in wuhan, china: a descriptive study," The Lancet, vol. 395, no. 10223, pp. 507-513, 2020. [
DOI:10.1016/S0140-6736(20)30211-7]
2. J. D. Arias-Londoño, J. A. Gómez-García, L. Moro-Velázquez and J. I. Godino-Lorente, "Artificial intelligence applied to chest X-Ray images for the automatic detection of COVID-19. A thoughtful evaluation approach," in IEEE Access, pp. 1-1, 2020, doi: 10.1109/ACCESS.2020.3044858. [
DOI:10.1109/ACCESS.2020.3044858]
3. H. A. Rothan and S. N. Byrareddy, "The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak," Journal of autoimmunity, p.102433, 2020. [
DOI:10.1016/j.jaut.2020.102433]
4. Y. Pan, H. Guan, S. Zhou, Y. Wang, Q. Li, T. Zhu, Q. Hu, and L. Xia, "Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-ncov): a study of 63 patients in wuhan, china," European radiology, pp. 1-4, 2020. [
DOI:10.1007/s00330-020-06731-x]
5. C. CDC Weekly, "The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) - China, 2020", China CDC Weekly, vol. 2, no. 8, pp. 113-122, 2020. Available: 10.46234/ccdcw2020.032. [
DOI:10.46234/ccdcw2020.032]
6. P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya et al., "Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning," arXiv preprint arXiv:1711.05225, 2017.
7. A. Narin, C. Kaya, and Z. Pamuk, "Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks," arXiv preprint arXiv:2003.10849, 2020.
8. E. E.-D. Hemdan, M. A. Shouman, and M. E. Karar, "Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images," arXiv preprint arXiv:2003.11055, 2020.
9. L. ang, Z. Q. Lin, and A. Wong, "Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest radiography images," Scientific Reports, vol. 10, no. 19549, 2020. [
DOI:10.1038/s41598-020-76550-z]
10. M. Z. Islam, M. M. Islam, and A. Asraf, "A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images," Informatics in Medicine Unlocked, vol. 20, p. 100412, 2020. [
DOI:10.1016/j.imu.2020.100412]
11. J. Civit-Masot, F. Luna-Perejón, M. D. Morales, and A. Civit, "Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images," Applied Sciences, vol. 10, no. 13, 2020. [
DOI:10.3390/app10134640]
12. A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and P. R. Pinheiro, "CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection," IEEE Access, vol. 8, pp. 91 916- 91 923, 2020. [
DOI:10.1109/ACCESS.2020.2994762]
13. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, "Pytorch: An imperative style, highperformance deep learning library," in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/ 9015-pytorch-an-imperative-style-high-performance-deep-learning-library. Pdf
14. H. Y. F. Wong et al., "Frequency and distribution of chest radiographic findings in COVID-19 positive patients," Radiology, Mar. 2020, Art. no. 201160.
15. Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J., Hesketh, R., Yang, L. and Zheng, C., 2020. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology, 295(3), pp.715-721. [
DOI:10.1148/radiol.2020200370]
16. Bankier, A., MacMahon, H., Goo, J., Rubin, G., Schaefer-Prokop, C. and Naidich, D., 2017. Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society. Radiology, 285(2), pp.584-600. [
DOI:10.1148/radiol.2017162894]
17. S.-I. S. O. M. A. I. Radiology. (2020). COVID-19 Database. [Online]. Available: https://www.sirm.org/category/senza-categoria/covid-19/
18. J. C. Monteral. (2020). COVID-Chestxray Database. [Online]. Available: https://github.com/ieee8023/covid-chestxray-dataset.
19. P. Mooney. (2018). Chest X-Ray Images (Pneumonia). [Online]. Available: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.
20. S. Mirjalili, "Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems," Neural Computing and Applications, vol. 27, pp. 1053-1073, 2016. [
DOI:10.1007/s00521-015-1920-1]
21. Storn, R. and Price, K. 1995, Differential Evolution- A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical report, International Computer Science Institute, Berkeley, CA.
22. Q. Fan and X. Yan, "Self-Adaptive Differential Evolution Algorithm With Zoning Evolution of Control Parameters and Adaptive Mutation Strategies," in IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 219-232, Jan. 2016 [
DOI:10.1109/TCYB.2015.2399478]
23. J. Brest, V. Zumer and M. S. Maucec, "Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization," 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, 2006, pp. 215-222, [
DOI:10.1109/CEC.2006.1688311]
24. J. Wang, G. Liang and J. Zhang, "Cooperative Differential Evolution Framework for Constrained Multiobjective Optimization," in IEEE Transactions on Cybernetics, vol. 49, no. 6, pp. 2060-2072, June 2019, [
DOI:10.1109/TCYB.2018.2819208]