1. [1] G. Ferrari-Trecate, M. Muselli, D. Liberati, M. Morari, "A clustering technique for the identification of piecewise affine systems," Automatica, vol. 39, no. 2, pp. 205-217, 2003. [
DOI:10.1016/S0005-1098(02)00224-8]
2. [2] H. Nakada, K. Takaba, T. Katayama, "Identification of piecewise affine systems based on statistical clustering technique," Automatica, vol. 41,no. 5, pp. 905-913, 2005. [
DOI:10.1016/j.automatica.2004.12.005]
3. [3] A.L. Juloski, S. Weiland, W.P.M.H Heemels, "A Bayesian approach to identification of hybrid systems," IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1520-1533, 2005. [
DOI:10.1109/TAC.2005.856649]
4. [4] Y. Lu, S. Khatibisepehr, B. Huang, "A variational Bayesian approach to identification of switched ARX models," in IEEE 53rd Annual Conference on Decision and Control(CDC), 2014, pp.2542-2547. [
DOI:10.1109/CDC.2014.7039777]
5. [5] J. Roll, A. Bemporad, L. Ljung, "Identification of piecewise affine systems via mixed-integer programming," Automatica, vol. 40, no. 1,pp. 37-50, 2004. [
DOI:10.1016/j.automatica.2003.08.006]
6. [6] A. Bemporad, J. Roll, L. Ljung, "Identification of hybrid systems via mixed-integer programming," in Proceedings of the 40th IEEE Conference on Decision and Control, 2001, pp.786-792.
7. [7] A. Bemporad, A. Garulli, S. Paoletti, A. Vicino, "A bounded-error approach to piecewise affine system identification," IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1567-1580, 2005. [
DOI:10.1109/TAC.2005.856667]
8. [8] A. Bemporad, A. Garulli, S. Paoletti, A. Vicino, "A greedy approach to identification of piecewise affine models," in International Workshop on Hybrid Systems: Computation and Control, 2003, pp.97-112. [
DOI:10.1007/3-540-36580-X_10]
9. [9] Y. Ma, R. Vidal, "Identification of deterministic switched ARX systems via identification of algebraic varieties," in International Workshop on Hybrid Systems: Computation and Control, 2005, pp.449-465. [
DOI:10.1007/978-3-540-31954-2_29]
10. [10] R. Vidal, S. Soatto, Y. Ma, S. Sastry, "An algebraic geometric approach to the identification of a class of linear hybrid systems," in 42nd IEEE Conference on Decision and Control, 2003, pp.167-172.
11. [11] F. Lauer, "From support vector machines to hybrid system identification," Ph.D. dissertation, Université Henri Poincaré-Nancy I, 2008.
12. [12] A. Hartmann, J. M. Lemos, R. S. Costa, J. Xavier, S. Vinga, "Identification of switched ARX models via convex optimization and expectation maximization," Journal of Process Control, vol. 28, pp. 9-16, 2015. [
DOI:10.1016/j.jprocont.2015.02.003]
13. [13] G. Pillonetto, "A new kernel-based approach to hybrid system identification,"Automatica, vol. 70, pp. 21-31, 2016. [
DOI:10.1016/j.automatica.2016.03.011]
14. [14] A. L. J. Juloski, S. Paoletti, J. Roll, "Recent techniques for the identification of piecewise affine and hybrid systems," in Current trends in nonlinear systems and control, Springer, 2006, pp. 79-99. [
DOI:10.1007/0-8176-4470-9_5]
15. [15] S. Paoletti, A. L. J. Juloski, G. Ferrari-Trecate, R. Vidal, "Identification of hybrid systems: A tutorial," European journal of control, vol. 13, no.2, pp. 242-260, 2007. [
DOI:10.3166/ejc.13.242-260]
16. [16] A. Garulli, S. Paoletti, A. Vicino, "A survey on switched and piece-wise affine system identification," IFAC Proceedings Volumes, vol. 45, no.16, pp. 344-355, 2012. [
DOI:10.3182/20120711-3-BE-2027.00332]
17. [17] F. Lauer, G. Bloch, "Switched and piecewise nonlinear hybrid sys-tem identification," in International Workshop on Hybrid Systems: Computation and Control, Berlin., 2008, pp.330-343. [
DOI:10.1007/978-3-540-78929-1_24]
18. [18] G. Bloch and F. Lauer, "Reduced-size kernel models for nonlinear hybrid system identification," IEEE Transactions on Neural Networks, vol. 22,no. 12, pp. 2398-2405, 2011. [
DOI:10.1109/TNN.2011.2171361]
19. [19] F. Lauer, G. Bloch, R. Vidal, "Nonlinear hybrid system identification with kernel models," in49thIEEEConferenceonDecisionandControl,CDC2010, 2010, pp.696-701. [
DOI:10.1109/CDC.2010.5718011]
20. [20] L. Bako, K. Boukharouba, S. Lecoeuche, "Anℓ0-ℓ1norm based optimization procedure for the identification of switched nonlinear systems," in 49th IEEE Conference on Decision and Control (CDC), 2010,pp.4467-4472.
21. [21] V. L. Le, F. Lauer, L. Bako, G. Bloch, "Learning nonlinear hybridsystems: from sparse optimization to support vector regression," in Proceedings of the 16th international conference on Hybrid systems: computation and control, 2013, pp.33-42.
22. [22] F. Bianchi, M. Prandini, L. Piroddi, "A randomized approach to switched nonlinear systems identification," IFAC Papers On Line, vol. 51, no. 15,pp. 281-286, 2018. [
DOI:10.1016/j.ifacol.2018.09.148]
23. [23] A. Scampicchio, A. Giaretta, G. Pillonetto, "Nonlinear Hybrid Systems Identification using Kernel-Based Techniques," IFAC Papers On Line, vol.51, no. 15, pp. 269-274, 2018. [
DOI:10.1016/j.ifacol.2018.09.146]
24. [24] A. Brusaferri, M. Matteucci, A. Spinelli,"Estimation of Switched Markov Polynomial NARX models, "arXivpreprintarXiv: 2009.14073,2020.
25. [25] F. Bianchi, M. Prandini, L. Piroddi, "A randomized two-stage iterative method for switched nonlinear systems identification," Nonlinear Analysis: Hybrid Systems, vol. 35, pp. 100818, 2020. [
DOI:10.1016/j.nahs.2019.100818]
26. [26] C. Xiujun, H. Hongwei, W. Lin, X. Zhengqing, "Identification of switched nonlinear systems based on EM algorithm," In 39th Chinese Control Conference (CCC), pp.1337-1342, 2020. [
DOI:10.23919/CCC50068.2020.9188381]
27. [27] J. Lunze, F. Lamnabhi-Lagarrigue, Handbook of hybrid systems control: Theory, tools, applications, Cambridge University Press, 2009. [
DOI:10.1017/CBO9780511807930]
28. [28] David. JC. MacKay, "Bayesian interpolation," Neural computation, vol.4, no. 3, pp. 415-447, 1992. [
DOI:10.1162/neco.1992.4.3.415]
29. [29] L. Ljung, System identification, in: Signal analysis and prediction, Springer, 1998, pp. 163-173. [
DOI:10.1007/978-1-4612-1768-8_11]
30. [30] S. S. Keerthi, C.-J. Lin, Asymptotic behaviors of support vector machines with Gaussian kernel, Neural computation 15 (7) (2003) 1667-1689. [
DOI:10.1162/089976603321891855]
31. [31] D. J. MacKay, Probable networks and plausible predictions: a review of practical Bayesian methods for supervised neural networks, Network: computation in neural systems 6 (3) (1995) 469-505. [
DOI:10.1088/0954-898X_6_3_011]
32. [32] M. E. Tipping, Bayesian inference: An introduction to principles and practice in machine learning, in: Advanced lectures on machine Learning, Springer, 2004, pp. 41-62. [
DOI:10.1007/978-3-540-28650-9_3]
33. [33] T. V. Gestel, J. A. Suykens, G. Lanckriet, A. Lambrechts, B. D. Moor,J. Vandewalle, Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis, Neural computation 14 (5) (2002) 1115-1147. [
DOI:10.1162/089976602753633411]
34. [34] P. Grünwald, A tutorial introduction to the minimum description length principle, Advances in minimum description length: Theory and applications (2005) 3-81. [
DOI:10.7551/mitpress/1114.001.0001]
35. [35] F. Lauer, R. Vidal, G. Bloch, A product-of-errors framework for linear hybrid system identification, in: Proc. of the 15th IFAC Symp. on System Identification (SYSID), Saint-Malo, France, 2009. [
DOI:10.3182/20090706-3-FR-2004.00093]