XML Persian Abstract Print

1- Malek Ashtar University of technology
Abstract:   (417 Views)
In this paper, a new predictive filter for alignment of the inertial navigation system with a nonlinear model is presented, and its stability is analyzed. The stability is analyzed according to the Lyapunov method. The Lyapunov function is selected as a quadratic cost function. This method provides sufficient conditions for the stability of the estimated state against measurement uncertainty and noise. The proposed method is used to improve the initial alignment accuracy of the inertial navigation system with a large misalignment azimuth angle. The measurement model of this system is nonlinear and has a modeling error. In this method, the model error is estimated and compensated in the filter algorithm; therefore, the error of the state estimation is reduced in the updating step. By performing various simulations of this method on the real data of microelectromechanical (MEMS) sensor and comparing it with EKF and UKF, it is observed that the proposed method has higher accuracy and convergence speed than EKF and UKF. The new filter proves to have asymptotic stability.
Type of Article: Research paper | Subject: Special
Received: 2021/05/25 | Accepted: 2021/10/2 | ePublished ahead of print: 2021/10/10

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb