1. [ ]I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
2. [ ]R. Hilfer, Application of Fractional Calculus in Physics, World Science Publishing, Singapore, 2000. [
DOI:10.1142/3779]
3. [ ]A. Boulkroune, A. Bouzerbia and T. Bouden, 2016, "Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control", Neural Computing and Applications, vol. 27, no. 5, pp. 1349-1360. [
DOI:10.1007/s00521-015-1938-4]
4. [ ]N. Laskin, 2000, "Fractional market dynamics", Physica A: Statistical Mechanics and its Applications, vol. 287, no. 3-4, pp. 482-492. [
DOI:10.1016/S0378-4371(00)00387-3]
5. [ ]X. Yin, D. Yue and S. Hu, 2013, "Consensus of fractional Order heterogeneous multi-agent systems", IET Control Theory and Applications, vol.7, no. 2, pp. 314-322. [
DOI:10.1049/iet-cta.2012.0511]
6. [ ]J.G. Lu, G. Chen, 2009, "Robust stability and stabilization of fractional-order interval systems: An LMI approach", IEEE Transaction on Automatic Control, vol. 54, no. 6, pp. 1294-1299. [
DOI:10.1109/TAC.2009.2013056]
7. [ ]Y. Chen, Y. Wei, X. Zhou, Y. Wang, 2017, "Stability for nonlinear fractional order systems: an indirect approach", Nonlinear Dynamics. vol. 89, no. 2, pp. 1011-1018. [
DOI:10.1007/s11071-017-3497-y]
8. [ ]Z. Song, K. Sun, S. Ling, 2017, "Stabilization and synchronization for a mechanical system via adaptive sliding mode control". ISA Transaction, vol. 68, pp. 353-366. [
DOI:10.1016/j.isatra.2017.02.013]
9. [ ]N. Goléa, A. Goléa, K. Barra, T. Bouktir, 2008, "Observer-based adaptive control of robot manipulators: Fuzzy systems approach", Applied Soft Computing, vol. 8, no. 1, pp. 778-787. [
DOI:10.1016/j.asoc.2007.05.011]
10. [ ]M.P.Aghababa, 2012, "Robust stabilization and synchronization of a class of fractional- order chaotic systems via a novel fractional sliding mode controller", Communications in Nonlinear Science and Numerical Simulation, vol.17, pp. 2670-2681. [
DOI:10.1016/j.cnsns.2011.10.028]
11. [ ] Y. Li, Y. Chen, I. Podlubny, 2010, "Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability", Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1810-1821. [
DOI:10.1016/j.camwa.2009.08.019]
12. [ ] J. Yu, H. Hu, S. Zhou, X. Lin, 2013, "Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems", Automatica, vol. 49, no. 6, pp. 1798-1803. [
DOI:10.1016/j.automatica.2013.02.041]
13. [ ] C. Farges, M. Moze, J. Sabatier, 2010, "Pseudo-state feedback stabilization of commensurate fractional order systems", Automatica, vol. 46, pp. 1730-1734. [
DOI:10.1016/j.automatica.2010.06.038]
14. [ ]J.C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, 2011, "A Lyapunov approach to the stability of fractional differentiel equations", Signl Processing, vol. 91 no. 3, pp. 437-445. [
DOI:10.1016/j.sigpro.2010.04.024]
15. [ D.Y. Chen, R.F. Zhang, X.Z. Liu, X.Y. Ma, 2014, "Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks", Communications in Nonlinear Science and Numerical Simulation, vol. 19, pp. 4105-4121. [
DOI:10.1016/j.cnsns.2014.05.005]
16. [ ] M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, 2015, "Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems", Communications in Nonlinear Science and Numerical Simulation, vol. 22, no. 1-3, pp. 650-659. [
DOI:10.1016/j.cnsns.2014.10.008]
17. [ ] S. Ibrir, M. Bettayeb, 2015, "New sufficient conditions for observer-based control of fractional-order uncertain systems", Automatica, vol. 59, pp. 216-223. [
DOI:10.1016/j.automatica.2015.06.002]
18. [ ] A. Mohammadzadeh, S. Ghaemi, 2018, "Robust synchronization of uncertain fractional-order chaotic systems with time-varying delay", Nonlinear Dynamics, vol. 93, pp. 1809-1821. [
DOI:10.1007/s11071-018-4290-2]
19. [ ] T. Liu, F.Wang,W. Lu, X.Wang, 2019, "Global stabilization for a class of nonlinear fractional-order systems, International Journal of Modeling, "Simulation and Scientific Computing, vol. 10, pp. 1-10. [
DOI:10.1142/S1793962319410095]
20. [ ] Y. H. Lan, Y. Zhou, 2011, "Lmi-based robust control of fractional-order uncertain linear systems", Computers and Mathematics with Applications, vol. 62, no.3, pp. 1460-1471. [
DOI:10.1016/j.camwa.2011.03.028]
21. [ ] Y. H. Lan, H. X. Huang, Y.Zhou, 2012, "Observer-based robust control of α (1<α<2) fractional-order uncertain systems: a linear matrix inequality approach", IET Control Theory Application. vol. 6, pp. 229-234. [
DOI:10.1049/iet-cta.2010.0484]
22. [ ] E. A. Boroujeni, H. R. Momeni, 2012, "Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems", Signal Processing.vol. 92, pp. 2365-2370,. [
DOI:10.1016/j.sigpro.2012.02.009]
23. [ ] Z.S. Aghayan, A. Alfi, T. Machado, 2021, "Observer-based control approach for fractional-order delay systems of neutral type with saturating actuator". Mathematical Methods in Applied Science, vol. 44, no. 11, pp. 8554-8564. [
DOI:10.1002/mma.7282]
24. [ ] H. F. Ghavidel, A. A Kalat, 2017, "Observer-based robust composite adaptive fuzzy control by uncertainty estimation for a class of nonlinear systems", Neurocomputing, vol. 230, pp.100-109. [
DOI:10.1016/j.neucom.2016.12.001]
25. [ ] H. F. Ghavidel, A. A Kalat, 2018, "Observer-based hybrid adaptive fuzzy control for affine and nonaffine uncertain nonlinear systems", Neural Computing and Applications, vol. 30, pp. 1187-1202. [
DOI:10.1007/s00521-016-2732-7]
26. [ ] D. Valério, J.J. Trujillo, M. Rivero, J.T. Machado, D. Baleanu, 2013, "Fractional calculus: a survey of useful formulas". The European Physical Journal Special Topics, vol. 222, no. 8, pp. 1827-46. [
DOI:10.1140/epjst/e2013-01967-y]
27. [ ] D. Chen, R. Zhang, X. Liu, X. Ma, 2014, "Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks", Communications in Nonlinear Science and Numerical Simulation, vol. 19, pp. 4105-4121. [
DOI:10.1016/j.cnsns.2014.05.005]
28. [ ] N. Aguila-Camacho, M.A. Duarte-Mermoud, J. Gallegos, 2014, "Lyapunov functions for fractional order systems", Communications in Nonlinear Science and Numerical Simulation, vol. 19, pp. 2951-7. [
DOI:10.1016/j.cnsns.2014.01.022]
29. [ ] M-A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos, R. Castro-Linares, 2014, "Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems", Communications in Nonlinear Science and Numerical Simulation vol. 22, no. 1-3, pp. 650-659. [
DOI:10.1016/j.cnsns.2014.10.008]
30. [ ] V. Sharma, V. Agrawal, B. Sharma, R. Nath, 2016, "Unknown input nonlinear observer design for continuous and discrete time systems with input recovery scheme". Nonlinear Dynamics vol. 85, no. 1, pp. 645-658. [
DOI:10.1007/s11071-016-2713-5]
31. [ ]V. Sharma, M. Shukla, B.B. Sharma, 2018, "Unknown input observer design for a class of fractional order nonlinear systems", Chaos, Soliton and Fractal, vol. 115, pp. 96-107. [
DOI:10.1016/j.chaos.2018.08.017]
32. [ ] A. Zemouche, M. Boutayeb, 2009, "A unified H∞ adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities", System and Control Letter, vol. 58, pp. 282- 288. [
DOI:10.1016/j.sysconle.2008.11.007]
33. [ ] A. Zemouche, M. Boutayeb, G.I. Bara, 2005, "Observer design for nonlinear systems. An approach based on the differential mean value theorem". Proc CDC-ECC'05, 44th IEEE Conference on IEEE, pp.6353-6358.
34. [ ] S. Boyd, L. Vandenberghe, 2001, "Convex optimization with engineering applications", in: Lecture Notes, Stanford University, Stanford.
35. [ ] M. M. Polycarpous, P. A. Ioannouq, 1996, " A Robust Adaptive Nonlinear Control Design", Automarica, vol. 32, pp. 423-427. [
DOI:10.1016/0005-1098(95)00147-6]
36. [ ] I. Petras, D. Bednarova, 2011 , "Control of fractional-order nonlinear systems: a review", Acta Mechanica et Automatica, vol.5, no.2, pp. 96-100.
37. [ ] S. Dadras, H.R. Momeni, 2010, "Control of a fractional-order economical systems via sliding mode" , Physica A: Statistical Mechanics and its Applications, vol. 389, pp. 2434-2442. [
DOI:10.1016/j.physa.2010.02.025]
38. [ ] M. Bettayeb, S. Djennoune, 2016, "Design of sliding mode controllers for nonlinear fractional-order systems via diffusive representation", Nonlinear Dynamics. vol. 84, pp. 593-605. [
DOI:10.1007/s11071-015-2509-z]
39. [ ] A. Zemouche and M. Boutayeb, 2013, "On LMI conditions to design observers for Lipschitz nonlinear systems," Automatica, vol. 49, pp. 585-591. [
DOI:10.1016/j.automatica.2012.11.029]
40. [ ] E. A. Boroujeni, H. R. Momeni, 2012, "Observer Based Control of a Class of NonlinearFractional Order Systems using LMI", World Academy of Science, Engineering and Technology, vol. 6 (1), pp. 81-84.