Volume 16, Issue 4 (Journal of Control, V.16, N.4 Winter 2023)                   JoC 2023, 16(4): 1-13 | Back to browse issues page

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abooee A, Mahmoodian Barzi F, Haeri M. Maximum Power Point Tracking in an Uncertain Photovoltaic System Utilizing Finite-Time Nonlinear Control Approach. JoC 2023; 16 (4) :1-13
URL: http://joc.kntu.ac.ir/article-1-949-en.html
1- Department of Electrical Engineering, Yazd University, Yazd, Iran
2- Advanced Control Systems Laboratory, Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
Abstract:   (1045417 Views)
In this paper, by utilizing the finite-time robust nonlinear control approach, the maximum power point tracking problem is discussed and investigated for a closed-loop photovoltaic system. First, a comprehensive dynamical model for the photovoltaic system is introduced and elaborated. Next, to achieve the maximum power point, reference values for current and voltage of the photovoltaic module are determined by mathematical analysis. By defining tracking errors and two auxiliary variables, it is mathematically demonstrated that the maximum power point tracking problem of an uncertain photovoltaic system is equivalent to the global finite-time stabilization problem of an equilibrium point associated with an uncertain second order nonlinear system. By developing the terminal sliding mode control and defining several innovative sliding manifolds, three different types of finite-time robust nonlinear controllers are designed and proposed to accomplish the maximum power point tracking goal for the closed-loop photovoltaic system. By applying several lemmas, it is proven that all proposed controllers are able to guarantee the mentioned stability of the closed-loop photovoltaic system in the presence of uncertainties. In proposed control schemes, the convergence finite time depends on the values of arbitrary constants and, in consequence, by choosing proper values for these constants, the aforementioned finite time would be reduced significantly. Eventually, three proposed control schemes are numerically simulated onto the photovoltaic system and simulation results illustrate that the suggested controllers properly fulfill and provide the maximum power point tracking objective.
Type of Article: Research paper | Subject: Special
Received: 2022/08/11 | Accepted: 2023/02/13 | ePublished ahead of print: 2023/03/1 | Published: 2023/03/1

References
1. [1] F. Faraz Ahmad, C. Ghenai, A. K. Hamid, and M. Bettayeb, "Application of sliding mode control for maximum power point tracking of solar photovoltaic systems: A comprehensive review," Annual Reviews in Control, vol. 49, no. 1, pp. 173-196, 2020. [DOI:10.1016/j.arcontrol.2020.04.011]
2. [2] M. Sarvi and A. Azadian, "A comprehensive review and classified comparison of MPPT algorithms in PV systems," Energy Systems, vol. 13, no. 1, pp. 281-320, 2022. [DOI:10.1007/s12667-021-00427-x]
3. [3] T. T. Sarkar and C. Mahanta, "Gain tuned sliding mode control based maximum power point tracking for solar PV systems," IFAC-Paper Online, vol. 55, no. 1, pp. 417-422, 2022. [DOI:10.1016/j.ifacol.2022.04.069]
4. [4] A. Kchaou, A. Naamane, Y. Koubaa, and N. M'sirdi, "Second order sliding mode-based MPPT control for photovoltaic applications," Solar Energy, vol. 155, no. 1, pp. 758-769, 2017. [DOI:10.1016/j.solener.2017.07.007]
5. [5] D. G. Montoya, C. A. Ramos-Paja, and R. Giral, "Improved design of sliding-mode controllers based on the requirements of MPPT techniques," IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 235-247, 2016. [DOI:10.1109/TPEL.2015.2397831]
6. [6] D. Cortes-Vega and H. Alazki, "Robust maximum power point tracking scheme for PV systems based on attractive ellipsoid method," Sustainable Energy, Grids and Networks, vol. 25, no. 1, pp. 100410 (1-14), 2021. [DOI:10.1016/j.segan.2020.100410]
7. [7] A. K. Podder, N. K. Roy, and H. R. Pota, "MPPT methods for solar PV systems: a critical review based on tracking nature," IET Renewable Power Generation, vol. 13, no. 10, pp. 1615-1632, 2019. [DOI:10.1049/iet-rpg.2018.5946]
8. [8] Y. Zhu and J. Fei, "Adaptive global fast terminal sliding mode control of grid-connected photovoltaic system using fuzzy neural network approach," IEEE Access, vol. 5, no. 1, pp. 9476-9484, 2017. [DOI:10.1109/ACCESS.2017.2707668]
9. [9] M. A. Mahmud, T. K Roy, S. Saha, M. E. Haque, and H. R Pota, "Robust nonlinear adaptive feedback linearizing decentralized controller design for islanded DC microgrids," IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5343-5352, 2019. [DOI:10.1109/TIA.2019.2921028]
10. [10] K. Dahech, M.Allouche, T. Damak, and F.Tadeo, "Backstepping sliding mode control for maximum power point tracking of a photovoltaic system," Electric Power Systems Research, vol. 143, no. 1, pp. 182-188, 2017. [DOI:10.1016/j.epsr.2016.10.043]
11. [11] D. G.Montoya, P. A. Ortiz Valencia, and C. A. Ramos-Paja, "Fixed-frequency implementation of sliding-mode controllers for photovoltaic systems," International Journal of Energy and Environmental Engineering, vol. 10, no. 1, pp. 287-305, 2019. [DOI:10.1007/s40095-019-0306-z]
12. [12] E. Bianconi, J. Calvente, R. Giral, E. Mamarelis, G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, and M. Vitelli, "A fast current-based MPPT technique employing sliding mode control," IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1168-1178, 2013. [DOI:10.1109/TIE.2012.2190253]
13. [13] احمد دهقان زاده، غلامرضا فراهانی و محسن معبودی، "ردیابی توان بیشینه سیستم‌های فتوولتائی با استفاده از الگوریتم رسانایی افزایشی اصلاح شده و کنترل‌کننده پیش‏بین" مجله علمي و پژوهشي کنترل، جلد 12، شماره 2، بهار 1397، صفحات 75-67.
14. [14] Z. Meng, W. Shao, J. Tang, and H. Zhou, "Sliding-mode control based on index control law for MPPT in photovoltaic systems," CES Transactions on Electrical Machines and Systems, vol. 2, no. 3, pp. 303-311, 2018. [DOI:10.30941/CESTEMS.2018.00038]
15. [15] F. Valenciaga and F. A. Inthamoussou, "A novel PV-MPPT method based on a second order sliding mode gradient observer," Energy Conversion and Mangement, vol. 176, no. 1, pp. 422-430, 2018. [DOI:10.1016/j.enconman.2018.09.018]
16. [16] محمود ابوالحسنی زرجو، سید بابک مظفری و تورج امرایی، "کنترل توربین بادی با ژنراتور القایی دوگانه تغذیه جهت استحصال حداکثر توان قابل جذب" مجله علمي و پژوهشي کنترل، جلد 8، شماره 4، زمستان 1393، صفحات 53-43.
17. [17] R. Pradhan and B. Subudhi, "Double integral sliding mode MPPT control of a photovoltaic system," IEEE Transactions on Control Systems Technology, vol. 24, no. 1, pp. 285-292, 2016. [DOI:10.1109/TCST.2015.2420674]
18. [18] B. K. Oubbati, M. Boutoubat, A. Rabhi, and M. Belkheiri, "Experiential integral backstepping sliding mode controller to achieve the maximum power point of a PV system," Control Engineering Practice, vol. 102, no. 1, pp. 104570 (1-15), 2020. [DOI:10.1016/j.conengprac.2020.104570]
19. [19] S. Rajamand, "A novel sliding mode control and modified PSO-modified P&O algorithms for peak power control of PV," ISA Transactions, DOI: 10.1016/j.isatra.2022.04.009, 2022. [DOI:10.1016/j.isatra.2022.04.009]
20. [20] A. S. Deshpande and S. L. Patil, "Robust observer-based sliding mode control for maximum power point tracking," Journal of Control, Automation and Electrical Systems, vol. 31, no. 1, pp. 1210-1220, 2020. [DOI:10.1007/s40313-020-00617-5]
21. [21] H. Aminnejhad, S. Kazeminia, and M. Aliasghary, "Robust sliding-mode control for maximum power point tracking of photovoltaic power systems with quantized input signal," Optik, vol. 247, no. 1, pp. 167983(1-12), 2021. [DOI:10.1016/j.ijleo.2021.167983]
22. [22] D. Cortes-Vega and H. Alazki, "Robust maximum power point tracking scheme for PV systems based on attractive ellipsoid method," Sustainable Energy, Grids and Networks, vol. 25, no. 1, pp. 100410 (1-14), 2021. [DOI:10.1016/j.segan.2020.100410]
23. [23] هادی دلاوری و سیده زهرا رشیدنژاد حیدری، "طراحی کنترل کننده مد لغزشی ترمینال تطبیقی مرتبه کسری برای ردیابی نقطه حداکثر توان در یک سلول خورشیدی تحت شرایط عادی و شرایط سایه جزئی" نشریه سامانه‏های غیرخطی در مهندسی برق، جلد 5، شماره2، زمستان 1397، صفحات 22-4.
24. [24] علي ابويي، حمیدرضا احمدزاده، محمد حائری و محمد مهدی عارفی، " طراحی گشتاورهای غیرخطی زمان-متناهی مقاوم برای ربات n-درجه آزادی درحضور نامعینی‌ها و غیرخطی‌سازهای ورودی شعاعی و ناحیه مرده" مجله علمي و پژوهشي کنترل، جلد 14، شماره 1، بهار 1399، صفحات 91-73.
25. [25] علي ابويي، مهران اسلامی و محمد حائری، "طراحی کنترل‌کننده‌های غیرخطی زمان-متناهی مقاوم برای زیردریایی شش درجه آزادی به منظور ردیابی مسیر" مجله علمي و پژوهشي کنترل، جلد 14، شماره 1، بهار 1399، صفحات 113-93.
26. [26] H. Fakharizade Bafghi, M.R. Jahed-Motlagh, A. Abooee, and A. Moarefianpur, "Robust finite-time tracking for a square fully-actuated class of nonlinear systems," Nonlinear Dynamics, vol. 103, no. 1, pp. 1611-1625, 2021. [DOI:10.1007/s11071-020-06187-0]
27. [27] F. Sedghi, M. M. Arefi, A. Abooee, and S. Yin, "Distributed adaptive-neural finite-time consensus control for stochastic nonlinear multi-agent systems subject to saturated inputs," IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2022.3145975, 2022. [DOI:10.1109/TNNLS.2022.3145975]
28. [28] Z. Yang and H. Sugiura, "Robust nonlinear control of a three-tank system using finite-time disturbance observers," Control Engineering Practice, vol. 84, no. 1, pp. 63-71, 2019. [DOI:10.1016/j.conengprac.2018.11.013]
29. [29] M. Basin, "Finite- and fixed-time convergent algorithms: Design and convergence time estimation," Annual Reviews in Control, vol. 48, no. 1, pp. 209-221, 2019. [DOI:10.1016/j.arcontrol.2019.05.007]
30. [30] A. Abooee, M. Hayeri Mehrizi, M. M. Arefi, and S. Yin, "Finite-time sliding mode control for a 3-DOF fully actuated autonomous surface vehicle," Transactions of the Institute of Measurement and Control, vol. 43, no. 2, pp. 371-389, 2021. [DOI:10.1177/0142331220957516]
31. [31] J. Yu, P. Shi, and L. Zhao, "Finite-time command filtered backstepping control for a class of nonlinear systems," Automatica, vol. 92, no. 1, pp. 173-180, 2018. [DOI:10.1016/j.automatica.2018.03.033]
32. [32] L. Sun, M. Li, M. Wang, W. Yin, N. Sun, and J. Liu, "Continuous finite-time output torque control approach for series elastic actuator," Mechanical Systems and Signal Processing, vol. 139, no. 1, pp. 105853(1-12), 2020. [DOI:10.1016/j.ymssp.2018.12.031]
33. [33] K. Mei, L. Ma, R. He, and S. Ding, "Finite-time controller design of multiple integrator nonlinear systems with input saturation," Applied Mathematics and Computation, vol. 372, no. 1, pp. 1-16, 2020. [DOI:10.1016/j.amc.2019.124986]
34. [34] A. Abooee, M. M. Arefi, F. Sedghi, and V. Abootalebi, "Three robust nonlinear control schemes for finite-time tracking problem of a 5-DOF upper-limb exoskeleton robot," International Journal of Control, vol. 92, no. 9, pp. 2178-2193, 2019. [DOI:10.1080/00207179.2018.1430379]
35. [35] F. Sedghi, M. M. Arefi, A. Abooee, and O. Kaynak, "Adaptive robust finite-time nonlinear control of a typical autonomous underwater vehicle with saturated inputs and uncertainties," IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp. 2517-2527, 2021. [DOI:10.1109/TMECH.2020.3041613]
36. [36] X. Tang, D. Zhai, and X. Li, "Adaptive fault-tolerance control based finite-time backstepping for hypersonic flight vehicle with full state constrains," Information Sciences, vol. 507, no. 1, pp. 53-66, 2020. [DOI:10.1016/j.ins.2019.08.012]
37. [37] Z. Y. Sun, C. Q. Zhou, C. C. Chen, and Q. Meng, "Fast finite-time adaptive stabilization of high-order uncertain nonlinear systems with output constraint and zero dynamics," Information Sciences, vol. 514, no. 1, pp. 571-586, 2020. [DOI:10.1016/j.ins.2019.11.006]
38. [38] Y. Guo, J. H. Guo, X. Liu, A. J. Li, and C. Q. Wang, "Finite-time blended control for air-to-air missile with lateral thrusters and aerodynamic surfaces," Aerospace Science and Technology, vol. 97, no. 1, pp. 105638 (1-7), 2020. [DOI:10.1016/j.ast.2019.105638]
39. [39] H. Li, S. Zhao, W. He, and R. Lu, "Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone," Automatica, vol. 100, no. 1, pp. 99-107, 2019. [DOI:10.1016/j.automatica.2018.10.030]
40. [40] S. P. Bhat and D. S. Bernstein, "Continuous finite-time stabilization of the translational and rotational double integrators," IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 678-682, 1998. [DOI:10.1109/9.668834]
41. [41] A. Zaidi, K. Dahech, and T. Damak, "Maximum power point tracking of photovoltaic systems based on fast terminal sliding mode controller," International Journal of Renewable Energy Research, vol. 6, no. 4, pp. 1435-1445, 2016.
42. [42] A. K. Podder, M. Habibullah, N. K. Roy, and H. R. Pota, "A chronological review of prospects of solar photovoltaic systems in Bangladesh: Feasibility study analysis, policies, barriers, and recommendations," IET Renewable Power Generation, vol. 15, no. 10, pp. 2109-2132, 2021. [DOI:10.1049/rpg2.12165]