Volume 18, Issue 2 (Journal of Control, V.18, N.2 Summer 2024)                   JoC 2024, 18(2): 55-68 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdian Dehkordi N, Hafez Alavian M, Najafirad M J. Voltage control of DC microgrids using hierarchical controller based on Kharitonov theory. JoC 2024; 18 (2) :55-68
URL: http://joc.kntu.ac.ir/article-1-954-en.html
1- Shahid Rajaee Teacher Training University
Abstract:   (2959 Views)
In this paper, a new hierarchical robust control approach based on the combination of decentralized and distributed control is proposed for voltage control and power sharing in islanded DC microgrids by considering uncertainties and disturbances in the primary control loops and communication channels in the secondary layer. Uncertainties and disturbances are the main factors that can affect the stability of a microgrid. Unlike the previous methods, first by using a decentralized robust PI control structure based on Kharitonov's theory, the primary voltage control loop is robustly designed considering uncertainties and disturbances. By anticipating these changes and preventing them from entering the communication channel in the secondary layer, we compensate for the voltage deviations in the primary layer by using the distributed PI robust control structure. In addition to being simple and robust, the proposed controller is based on a new consensus and robust decentralized protocol, which has a higher convergence rate than the previous protocols and its performance is completely satisfactory under the conditions of uncertainties and large disturbances. Different simulations are performed in MATLAB/SimPowerSystems toolbox on a standard DC microgrid including four distributed generations and under different disturbances. The simulation results show the effectiveness of the proposed controller. In general, the proposed controller increases the reliability of microgrid by sending low data in communication channels.
Full-Text [PDF 842 kb]   (89 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2022/09/20 | Accepted: 2023/12/18 | ePublished ahead of print: 2024/03/1 | Published: 2024/09/20

References
1. [1] S. Dadjo Tavakoli, J. Khajesalehi, M. Hamzeh, K. Sheshyekani. 2016. Decentralised voltage balancing in bipolar dc microgrids equipped with trans‐z source interlinking converter. IET Renewable Power Generation, vol. 10, no. 5, pp. 703-712. [DOI:10.1049/iet-rpg.2015.0222]
2. [2] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke. 2014. Trends in microgrid control. IEEE Transactions on smart grid, vol. 5, no. 4, pp. 1905-1919. [DOI:10.1109/TSG.2013.2295514]
3. [3] S. Islam, S. Agarwal, A. Shyam, A. Ingle, S. Thomas, S. Anand, S. R. Sahoo. 2018. Ideal current‐based distributed control to compensate line impedance in DC microgrid. IET Power Electronics, vol. 11, no. 7, pp. 1178-1186. [DOI:10.1049/iet-pel.2017.0531]
4. [4] C. Papadimitriou, E. Zountouridou, N. Hatziargyriou. 2015. Review of hierarchical control in DC microgrids. Electric Power Systems Research, vol. 122, pp. 159-167. [DOI:10.1016/j.epsr.2015.01.006]
5. [5] A. C. Zambroni de Souza, M. Santos, M. Castilla, J. Miret, L. Garcia de Vicuna, D. Marujo. 2015. Voltage security in AC microgrids: a power flow‐based approach considering droop‐controlled inverters. IET Renewable Power Generation, vol. 9, no. 8, pp. 954-960. [DOI:10.1049/iet-rpg.2014.0406]
6. [6] T. Dragičević, X. Lu, J. C. Vasquez, J. M. Guerrero. 2015. DC microgrids-Part I: A review of control strategies and stabilization techniques. IEEE Transactions on power electronics, vol. 31, no. 7, pp. 4876-4891.
7. [7] P. C. Loh, F. Blaabjerg, S. Peyghami-Akhuleh, H. Mokhtari, 2016. 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC), IEEE, pp. 641-645. [DOI:10.1109/PEDSTC.2016.7556935]
8. [8] J. Yang, X. Jin, X. Wu, P. Acuna, R. P. Aguilera, T. Morstyn, V. G. Agelidis. 2017. Decentralised control method for DC microgrids with improved current sharing accuracy. IET Generation, Transmission & Distribution, vol. 11, no. 3, pp. 696-706. [DOI:10.1049/iet-gtd.2016.0295]
9. [9] F. Gao, R. Kang, J. Cao, T. Yang. 2019. Primary and secondary control in DC microgrids: a review. Journal of Modern Power Systems and Clean Energy, vol. 7, no. 2, pp. 227-242. [DOI:10.1007/s40565-018-0466-5]
10. [10] X. Lu, J. M. Guerrero, K. Sun, in 2013 IEEE International Symposium on Industrial Electronics, IEEE, 2013, pp. 1-6. [DOI:10.1109/ISIE.2013.6563742]
11. [11] M. Dong, L. Li, Y. Nie, D. Song, J. Yang. 2019. Stability analysis of a novel distributed secondary control considering communication delay in DC microgrids. IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6690-6700. [DOI:10.1109/TSG.2019.2910190]
12. [12] F. Guo, Q. Xu, C. Wen, L. Wang, P. Wang. 2018. Distributed secondary control for power allocation and voltage restoration in islanded DC microgrids. IEEE Transactions on Sustainable Energy, vol. 9, no. 4, pp. 1857-1869. [DOI:10.1109/TSTE.2018.2816944]
13. [13] A. Abhishek, A. Ranjan, S. Devassy, B. Kumar Verma, S. K. Ram, A. K. Dhakar. 2020. Review of hierarchical control strategies for DC microgrid. IET Renewable Power Generation, vol. 14, no. 10, pp. 1631-1640. [DOI:10.1049/iet-rpg.2019.1136]
14. [14] سیاوش اشنویی و رضا غنی زاده، 1397، طراحی کنترل‌کننده مقاوم فرکانس مبتنی بر تئوری خاریتانف، سومین کنفرانس ملی فناوری در مهندسی برق و کامپیوتر، تهران.
15. [15] علی حسامی نقشبندی، فرشید حبیبی و حسن بیورانی، 1391، طراحی یک کنترل کننده مقاوم ولتاژ برای یک ریزشبکه منفک براساس تئوری خاریتانف، بیستمین کنفرانس مهندسی برق ایران، تهران.
16. [16] B. R. Barmish, E. Jury. 1994. New tools for robustness of linear systems. IEEE Transactions on Automatic Control, vol. 39, no. 12, pp. 2525-2525.
17. [17] J. P. Lopes, C. L. Moreira, A. Madureira. 2006. Defining control strategies for microgrids islanded operation. IEEE Transactions on power systems, vol. 21, no. 2, pp. 916-924. [DOI:10.1109/TPWRS.2006.873018]
18. [18] M. S. Sadabadi, Q. Shafiee, A. Karimi. 2017. Plug-and-play robust voltage control of DC microgrids. IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6886-6896. [DOI:10.1109/TSG.2017.2728319]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb