دوره 17، شماره 4 - ( مجله کنترل، جلد 17، شماره 4، زمستان 1402 )                   جلد 17 شماره 4,1402 صفحات 19-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehestani Kolagar A, Entezari A, Alizadeh Pahlavani M R. Direct Power Control in BLDC Motor Drives Using Finite Control Set Model Predictive Control to Reduce Torque Ripple and Speed Fluctuation and Improve Harmonic Distortions. JoC 2024; 17 (4) :1-19
URL: http://joc.kntu.ac.ir/article-1-975-fa.html
دهستانی کلاگر آرش، انتظاری احمد، علیزاده پهلوانی محمدرضا. کنترل مستقیم توان در موتورهای BLDC به روش پیش‌بین مبتنی بر مدل با مجموعه کنترلی محدود، جهت کاهش ریپل گشتاور و نوسانات سرعت و بهبود اعوجاجات هارمونیکی. مجله کنترل. 1402; 17 (4) :1-19

URL: http://joc.kntu.ac.ir/article-1-975-fa.html


1- مجتمع دانشگاهی برق و کامپیوتر، دانشگاه صنعتی مالک اشتر، تهران، ایران
چکیده:   (2384 مشاهده)
موتورهای dc بدون جاروبک (BLDC) با توجه به ساختار ساده، بازده بالا و طول عمر زیاد، به¬طور گسترده¬ای در کاربردهای صنعتی استفاده می‌شوند. درایو این موتورها نیز پاسخ گذرای سریعی داشته و در حالت پایدار از شکل موج‌هایی با کیفیت بالا برخوردارند. در این مقاله، کنترل مستقیم توان به روش پیش‌بین مبتنی بر مدل با مجموعه کنترلی محدود (DP-FCS-MPC)، در درایو موتورهای BLDC ارائه شده و با روش مرسوم کنترل جریان بر اساسFCS-MPC مقایسه می‌شود. این مقایسه در شرایط عملکردی یکسان صورت گرفته و شامل عملکرد حالت پایدار موتور BLDC می‌باشد. شبیه‌سازی‌هایی که در نرم‌افزار PLECS انجام شده است، کارایی هر دو روش را در کنترل سرعت موتور BLDC در شرایط تغییر ناگهانی بار نشان می‌دهد. با این وجود، نشان داده می شود که کنترل مستقیم توان به روش پیش‌بین با مجموعه کنترلی محدود، دارای کارایی بهتر از نظر کاهش ریپل گشتاور، نوسانات کمتر سرعت و گشتاور، ریپل کمتر توان اکتیو و راکتیو و شکل‌ موج‌های جریان با کیفیت بالاتر از نظر اعوجاجات هارمونیکی می‌باشد.
متن کامل [PDF 2890 kb]   (244 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/7/10 | پذیرش: 1402/10/16 | انتشار الکترونیک پیش از انتشار نهایی: 1402/10/29 | انتشار: 1402/11/1

فهرست منابع
1. [1] Jin, H.; Liu, G.; Li, H.; Chen, B.; Zhang, H. 2022, "A Fast Commutation Error Correction Method for Sensorless BLDC Motor Considering Rapidly Varying Rotor Speed" IEEE Trans. Ind. Electron. 69, 3938-3947. [DOI:10.1109/TIE.2021.3070493]
2. [2] Jin, H.; Liu, G.; Zheng, S. 2022, "Commutation Error Closed-Loop Correction Method for Sensorless BLDC Motor Using Hardware-Based Floating Phase Back-EMF Integration" IEEE Trans. Ind. Inform. 18, 3978-3986. [DOI:10.1109/TII.2021.3113368]
3. [3] Chen, S.; Zhou, X.; Bai, G.; Wang, K.; Zhu, L. 2018, "Adaptive Commutation Error Compensation Strategy Based on a Flux Linkage Function for Sensorless Brushless DC Motor Drives in a Wide Speed Range" IEEE Trans. Power Electron, 33, 3752-3764. [DOI:10.1109/TPEL.2017.2765355]
4. [4] Zhao, D.; Wang, X.; Tan, B.; Xu, L.; Yuan, C.; Huangfu, Y. 2021, "Fast Commutation Error Compensation for BLDC Motors Based on Virtual Neutral Voltage" IEEE Trans. Power Electron, 36, 1259-1263. [DOI:10.1109/TPEL.2020.3006536]
5. [5] Lee, Y. 2019, "A New Method to Minimize Overall Torque Ripple in the Presence of Phase Current Shift Error for Three-Phase BLDC Motor Drive" Can. J. Electr. Comput. Eng, 42, 225-231. [DOI:10.1109/CJECE.2019.2907118]
6. [6] Zhang, H.; Li, H. 2021, "Fast Commutation Error Compensation Method of Sensorless Control for MSCMG BLDC Motor with Non ideal Back EMF" IEEE Trans. Power Electron, 36, 8044-8054. [DOI:10.1109/TPEL.2020.3030777]
7. [7] Jin, H.; Liu, G.; Li, H.; Zhang, H. 2021, "Closed-Loop Compensation Strategy of Commutation Error for Sensorless Brushless DC Motors with Non ideal Asymmetric Back-EMFs" IEEE Trans. Power Electron, 36, 11835-11846. [DOI:10.1109/TPEL.2021.3066783]
8. [8] Zhang, H.; Liu, G.; Zhou, X.; Zheng, S. 2021, "High-Precision Sensorless Optimal Commutation Deviation Correction Strategy of BLDC Motor with Asymmetric Back EMF" IEEE Trans. Ind. Inform, 17, 5250-5259. [DOI:10.1109/TII.2020.3027010]
9. [9] Chen, S.; Sun, W.; Wang, K.; Liu, G.; Zhu, L. 2018, "Sensorless High-Precision Position Correction Strategy for a 100 kW@20 000 r/min BLDC Motor with Low Stator Inductance" IEEE Trans. Ind. Inform, 14, 4288-4299. [DOI:10.1109/TII.2018.2793947]
10. [10] Wang, L.; Zhu, Z.Q.; Bin, H.; Gong, L. 2021, "A Commutation Error Compensation Strategy for High-Speed Brushless DC Drive Based on Adaline Filter" IEEE Trans. Ind. Electron, 68, 3728-3738. [DOI:10.1109/TIE.2020.2984445]
11. [11] Li, Y.; Song, X.; Zhou, X.; Huang, Z.; Zheng, S. 2020 "A Sensorless Commutation Error Correction Method for High-Speed BLDC Motors Based on Phase Current Integration" IEEE Trans. Ind. Inform, 16, 328-338. [DOI:10.1109/TII.2019.2917608]
12. [12] Ebadpour, M.; Amiri, N.; Jatskevich, J. 2021, "Fast Fault-Tolerant Control for Improved Dynamic Performance of Hall-Sensor-Controlled Brushless DC Motor Drives" IEEE Trans. Power Electron, 36, 14051-14061. [DOI:10.1109/TPEL.2021.3084921]
13. [13] Yang, L.; Zhu, Z.Q.; Gong, L.; Bin, H. 2021, "PWM Switching Delay Correction Method for High-Speed Brushless DC Drives" IEEE Access, 9, 81717-81727. [DOI:10.1109/ACCESS.2021.3085212]
14. [14] Gu, C.; Wang, X.; Shi, X.; Deng, Z. 2018, "A PLL-Based Novel Commutation Correction Strategy for a High-Speed Brushless DC Motor Sensorless Drive System" IEEE Trans. Ind. Electron, 65, 3752-3762. [DOI:10.1109/TIE.2017.2760845]
15. [15] Kolano, K. 2019, "Improved Sensor Control Method for BLDC Motors" IEEE Access, 7, 186158-186166. [DOI:10.1109/ACCESS.2019.2960580]
16. [16] Park, J.S.; Lee, K.-D. 2017, "Online Advanced Angle Adjustment Method for Sinusoidal BLDC Motors with Misaligned Hall Sensors" IEEE Trans. Power Electron, 32, 8247-8253. [DOI:10.1109/TPEL.2017.2694042]
17. [17] Aladsani, A.S.; AlSharidah, M.E.; Beik, O. 2021, "BLDC Motor Drives: A Single Hall Sensor Method and a 160_ Commutation Strategy" IEEE Trans. Energy Convers, 36, 2025-2035. [DOI:10.1109/TEC.2020.3046183]
18. [18]. Bae, J.; Lee, D.-H. 2018, "Position Control of a Rail Guided Mover Using a Low-Cost BLDC Motor" IEEE Trans. Ind. Appl, 54, 2392-2399. [DOI:10.1109/TIA.2018.2808930]
19. [19] Carey, K.D.; Zimmerman, N.; Ababei, C. 2019, "Hybrid field oriented and direct torque control for sensorless BLDC motors used in aerial drones" IET Power Electron, 12, 438-449. [DOI:10.1049/iet-pel.2018.5231]
20. [20] Khazaee, A.; Zarchi, H.A.; Markadeh, G.A.; Hesar, H.M. 2021, "MTPA Strategy for Direct Torque Control of Brushless DC Motor Drive" IEEE Trans. Ind. Electron, 68, 6692-6700. [DOI:10.1109/TIE.2020.3009576]
21. [21] Buja, G.; Bertoluzzo, M.; Keshri, R. 2015, "Torque Ripple-Free Operation of PM BLDC Drives with Petal-Wave Current Supply" IEEE Trans. Ind. Electron, 62, 4034-4043. [DOI:10.1109/TIE.2014.2385034]
22. [22] Bosso, A.; Conficoni, C.; Raggini, D.; Tilli, A. 2021, "A Computational-Effective Field-Oriented Control Strategy for Accurate and Efficient Electric Propulsion of Unmanned Aerial Vehicles" IEEE/ASME Trans. Mechatron, 26, 1501-1511. [DOI:10.1109/TMECH.2020.3022379]
23. [23] Masmoudi, M.; El Badsi, B.; Masmoudi, A. 2014, "Direct Torque Control of Brushless DC Motor Drives with Improved Reliability" IEEE Trans. Ind. Appl, 50, 3744-3753. [DOI:10.1109/TIA.2014.2313700]
24. [24]. Huang, C.-L.;Wu, C.-J.; Yang, S.-C. 2021, "Full-Region Sensorless BLDC Drive for Permanent Magnet Motor Using Pulse Amplitude Modulation with DC Current Sensing" IEEE Trans. Ind. Electron, 68, 11234-11244. [DOI:10.1109/TIE.2020.3034859]
25. [25] Yang, L.; Zhu, Z.Q.; Bin, H.; Zhang, Z.; Gong, L. 2021, "Virtual Third Harmonic Back EMF-Based Sensorless Drive for High-Speed BLDC Motors Considering Machine Parameter Asymmetries" IEEE Trans. Ind. Appl, 57, 306-315. [DOI:10.1109/TIA.2020.3033821]
26. [26] Chen, S.; Liu, G.; Zhu, L. 2017 "Sensorless Control Strategy of a 315 kW High-Speed BLDC Motor Based on a Speed-Independent Flux Linkage Function" IEEE Trans. Ind. Electron, 64, 8607-8617. [DOI:10.1109/TIE.2017.2698373]
27. [27] Song, X.; Han, B.; Wang, K. 2019, "Sensorless Drive of High-Speed BLDC Motors Based on Virtual Third-Harmonic Back EMF and High-Precision Compensation" IEEE Trans. Power Electron, 34, 8787-8796. [DOI:10.1109/TPEL.2018.2885031]
28. [28] Xia, K.; Ye, Y.; Ni, J.; Wang, Y.; Xu, P. 2020, "Model Predictive Control Method of Torque Ripple Reduction for BLDC Motor" IEEE Trans. Magn, 56, 1-6. [DOI:10.1109/TMAG.2019.2950953]
29. [29] De Castro, A.G.; Guazzelli, P.R.U.; dos Santos, S.T.C.A.; De Oliveira, C.M.R.; Pereira,W.C.A.; Monteiro, J.R.B.A. 11-14 November 2018, "Zero Sequence Power Contribution on BLDC Motor Drives. Part II: A FCS-MPC Current Control of Three-Phase Four-Leg Inverter Based Drive" In Proceedings of the 2018 13th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, pp. 1024-1029. [DOI:10.1109/INDUSCON.2018.8627310]
30. [30] Darba, A.; De Belie, F.; D'Haese, P.; Melkebeek, J.A. 2016, "Improved Dynamic Behavior in BLDC Drives Using Model Predictive Speed and Current Control" IEEE Trans. Ind. Electron, 63, 728-740. [DOI:10.1109/TIE.2015.2477262]
31. [31] Wen, H.; Yin, J. A. 18-21 October 2020, "Duty Cycle Based Finite-Set Model Predictive Direct Power Control for BLDC Motor Drives" In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, pp.821-825. [DOI:10.1109/IECON43393.2020.9254958]
32. [32] Trivedi, M.S.; Keshri, R.K. 2020, "Evaluation of Predictive Current Control Techniques for PM BLDC Motor in Stationary Plane" IEEE Access, 8, 46217-46228. [DOI:10.1109/ACCESS.2020.2978695]
33. [33] Valle, R.L.; de Almeida, P.M.; Ferreira, A.A.; Barbosa, P.G. 2017, "Unipolar PWM predictive current-mode control of a variable-speed low inductance BLDC motor drive" IET Electr. Power Appl, 11, 688-696. [DOI:10.1049/iet-epa.2016.0421]
34. [34] de Castro, A.G.; Pereira, W.C.D.A.; de Almeida, T.E.P.; de Oliveira, C.M.R.; Monteiro, J.R.B.D.A.; de Oliveira, A.A. 2018, "Improved Finite Control-Set Model-Based Direct Power Control of BLDC Motor With Reduced Torque Ripple" IEEE Trans. Ind. Appl, 54, 4476-4484. [DOI:10.1109/TIA.2018.2835394]
35. [35] de Castro, A.G.; de Andrade Pereira,W.C.; de Oliveira, C.M.; de Almeida, T.E.; Guazzelli, P.R.; de Almeida Monteiro, J.R.; deOliveira Junior, A.A. 2018, "Finite Control-Set Predictive Power Control of BLDC Drive for Torque Ripple Reduction" IEEE Lat. Am. Trans, 16, 1128-1135. [DOI:10.1109/TLA.2018.8362147]
36. [36] Ubare, P.; Ingole, D.; Sonawane, D. 2021, "Nonlinear Model Predictive Control of BLDC Motor with State Estimation" IFAC-apersOnLine, 54, 107-112. [DOI:10.1016/j.ifacol.2021.08.531]
37. [37]. Mohammd Taher, S.; Halvaei Niasar, A.; Abbas Taher, S. 2-4 February 2021, "A New MPC-based Approach for Torque Ripple Reduction in BLDC Motor Drive" In Proceedings of the 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tabriz, Iran, pp. 1-6. [DOI:10.1109/PEDSTC52094.2021.9405871]
38. [38] Aguirre, M.; Kouro, S.; Rojas, C.A.; Rodriguez, J.; Leno, J.I. 2018, "Switching Frequency Regulation for FCS-MPC Based on a Period Control Approach" IEEE Trans. Ind. Electron, 65, 5764-5773. [DOI:10.1109/TIE.2017.2777385]
39. [39]. Yang, Y.;Wen, H.; Fan, M.; He, L.; Xie, M.; Chen, R.; Norambuena, M.; Rodriguez, J. 2020, "Multiple-Voltage-Vector Model Predictive Control With Reduced Complexity for Multilevel Inverters" IEEE Trans. Transp. Electrification, 105-117. [DOI:10.1109/TTE.2020.2973045]
40. [40] Caseiro, L.M.A.; Mendes, A.M.S.; Cruz, S.M.A. 2019, "Dynamically Weighted Optimal Switching Vector Model Predictive Control of Power Converters. IEEE Trans. Ind. Electron, 66, 1235-1245. [DOI:10.1109/TIE.2018.2829689]
41. [41] Azab, M. 2021, "High performance decoupled active and reactive power control for three-phase grid-tied inverters using model predictive control". Prot. Control. Mod. Power Syst, 6, 25. [DOI:10.1186/s41601-021-00204-z]
42. [42] Azab, M. 2021, "A finite control set model predictive control scheme for single-phase grid-connected inverters" Renew. Sustain. Energy Rev, 135, 110131. [DOI:10.1016/j.rser.2020.110131]
43. [43] Lopez-Santos, O.; Dantonio, D.S.; Flores-Bahamonde, F.; Torres-Pinzón, C.A. Hysteresis Control Methods; Chapter 2; Kabalci, E. ,Inverters, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 35-60. [DOI:10.1016/B978-0-323-90217-5.00002-2]
44. [44] Aguilera, R.P.; Acuna, P.; Konstantinou, G.; Vazquez, S.; Leon, J.I. Basic Control Principles in Power Electronics: Analog and Digital Control Design; Chapter 2; Blaabjerg, F., Ed.; Control of Power Electronic Converters and Systems, Academic Press: Cambridge, MA, USA, 2018; pp. 31-68. [DOI:10.1016/B978-0-12-805245-7.00002-0]
45. [45] Kouzou, A. Power Factor Correction Circuits. In Power Electronics Handbook, 4th ed.; Chapter 16; Rashid, M.H., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 529-569. [DOI:10.1016/B978-0-12-811407-0.00017-9]
46. [46] Naseri, F.; Farjah, E.; Schaltz, E.; Lu, K.; Tashakor, N. 2021, "Predictive Control of Low-Cost Three-Phase Four-Switch Inverter-Fed Drives for Brushless DC Motor Applications" IEEE Trans. Circuits Syst. I Regul. Pap, 68, 1308-1318. [DOI:10.1109/TCSI.2020.3043468]
47. [47] de Almeida, P.M.; Valle, R.L.; Barbosa, P.G.; Montagner, V.F.; Cuk, V.; Ribeiro, P.F. 2021, "Robust Control of a Variable-Speed BLDC Motor Drive" IEEE J. Emerg. Sel. Top. Ind. Electron, 2, 32-41. [DOI:10.1109/JESTIE.2020.3035055]
48. [48] Baszynski, M.; Pirog, S. 2018, "Unipolar Modulation for a BLDC Motor with Simultaneously Switching of Two Transistors with Closed Loop Control for Four-Quadrant Operation" IEEE Trans. Ind. Inform, 14, 146-155. [DOI:10.1109/TII.2017.2723962]
49. [49] Gonzalez, J.J.; Montañez, F.G.; Mondragon, V.M.J.; Liceaga-Castro, J.U.; Escarela-Perez, R.; Olivares-Galvan, J.C. 2021, "Parameter Identification of BLDC Motor Using Electromechanical Tests and Recursive Least-Squares Algorithm: Experimental Validation" Actuators, 10, 143. [DOI:10.3390/act10070143]
50. [50] Xia, C.-L. Permanent Magnet Brushless DC Motor Drives and Controls; JohnWiley & Sons: Singapore; Pte. Ltd.: Solaris, Singapore, 2012; ISBN 978-1-118-18833-0. [DOI:10.1002/9781118188347]
51. [51] Maharajan, M.P.; Xavier, S.A.E. 2019, "Design of Speed Control and Reduction of Torque Ripple Factor in BLDC Motor Using Spider Based Controller" IEEE Trans. Power Electron, 34, 7826-7837. [DOI:10.1109/TPEL.2018.2880916]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb