1. [1] Jin, H.; Liu, G.; Li, H.; Chen, B.; Zhang, H. 2022, "A Fast Commutation Error Correction Method for Sensorless BLDC Motor Considering Rapidly Varying Rotor Speed" IEEE Trans. Ind. Electron. 69, 3938-3947. [
DOI:10.1109/TIE.2021.3070493]
2. [2] Jin, H.; Liu, G.; Zheng, S. 2022, "Commutation Error Closed-Loop Correction Method for Sensorless BLDC Motor Using Hardware-Based Floating Phase Back-EMF Integration" IEEE Trans. Ind. Inform. 18, 3978-3986. [
DOI:10.1109/TII.2021.3113368]
3. [3] Chen, S.; Zhou, X.; Bai, G.; Wang, K.; Zhu, L. 2018, "Adaptive Commutation Error Compensation Strategy Based on a Flux Linkage Function for Sensorless Brushless DC Motor Drives in a Wide Speed Range" IEEE Trans. Power Electron, 33, 3752-3764. [
DOI:10.1109/TPEL.2017.2765355]
4. [4] Zhao, D.; Wang, X.; Tan, B.; Xu, L.; Yuan, C.; Huangfu, Y. 2021, "Fast Commutation Error Compensation for BLDC Motors Based on Virtual Neutral Voltage" IEEE Trans. Power Electron, 36, 1259-1263. [
DOI:10.1109/TPEL.2020.3006536]
5. [5] Lee, Y. 2019, "A New Method to Minimize Overall Torque Ripple in the Presence of Phase Current Shift Error for Three-Phase BLDC Motor Drive" Can. J. Electr. Comput. Eng, 42, 225-231. [
DOI:10.1109/CJECE.2019.2907118]
6. [6] Zhang, H.; Li, H. 2021, "Fast Commutation Error Compensation Method of Sensorless Control for MSCMG BLDC Motor with Non ideal Back EMF" IEEE Trans. Power Electron, 36, 8044-8054. [
DOI:10.1109/TPEL.2020.3030777]
7. [7] Jin, H.; Liu, G.; Li, H.; Zhang, H. 2021, "Closed-Loop Compensation Strategy of Commutation Error for Sensorless Brushless DC Motors with Non ideal Asymmetric Back-EMFs" IEEE Trans. Power Electron, 36, 11835-11846. [
DOI:10.1109/TPEL.2021.3066783]
8. [8] Zhang, H.; Liu, G.; Zhou, X.; Zheng, S. 2021, "High-Precision Sensorless Optimal Commutation Deviation Correction Strategy of BLDC Motor with Asymmetric Back EMF" IEEE Trans. Ind. Inform, 17, 5250-5259. [
DOI:10.1109/TII.2020.3027010]
9. [9] Chen, S.; Sun, W.; Wang, K.; Liu, G.; Zhu, L. 2018, "Sensorless High-Precision Position Correction Strategy for a 100 kW@20 000 r/min BLDC Motor with Low Stator Inductance" IEEE Trans. Ind. Inform, 14, 4288-4299. [
DOI:10.1109/TII.2018.2793947]
10. [10] Wang, L.; Zhu, Z.Q.; Bin, H.; Gong, L. 2021, "A Commutation Error Compensation Strategy for High-Speed Brushless DC Drive Based on Adaline Filter" IEEE Trans. Ind. Electron, 68, 3728-3738. [
DOI:10.1109/TIE.2020.2984445]
11. [11] Li, Y.; Song, X.; Zhou, X.; Huang, Z.; Zheng, S. 2020 "A Sensorless Commutation Error Correction Method for High-Speed BLDC Motors Based on Phase Current Integration" IEEE Trans. Ind. Inform, 16, 328-338. [
DOI:10.1109/TII.2019.2917608]
12. [12] Ebadpour, M.; Amiri, N.; Jatskevich, J. 2021, "Fast Fault-Tolerant Control for Improved Dynamic Performance of Hall-Sensor-Controlled Brushless DC Motor Drives" IEEE Trans. Power Electron, 36, 14051-14061. [
DOI:10.1109/TPEL.2021.3084921]
13. [13] Yang, L.; Zhu, Z.Q.; Gong, L.; Bin, H. 2021, "PWM Switching Delay Correction Method for High-Speed Brushless DC Drives" IEEE Access, 9, 81717-81727. [
DOI:10.1109/ACCESS.2021.3085212]
14. [14] Gu, C.; Wang, X.; Shi, X.; Deng, Z. 2018, "A PLL-Based Novel Commutation Correction Strategy for a High-Speed Brushless DC Motor Sensorless Drive System" IEEE Trans. Ind. Electron, 65, 3752-3762. [
DOI:10.1109/TIE.2017.2760845]
15. [15] Kolano, K. 2019, "Improved Sensor Control Method for BLDC Motors" IEEE Access, 7, 186158-186166. [
DOI:10.1109/ACCESS.2019.2960580]
16. [16] Park, J.S.; Lee, K.-D. 2017, "Online Advanced Angle Adjustment Method for Sinusoidal BLDC Motors with Misaligned Hall Sensors" IEEE Trans. Power Electron, 32, 8247-8253. [
DOI:10.1109/TPEL.2017.2694042]
17. [17] Aladsani, A.S.; AlSharidah, M.E.; Beik, O. 2021, "BLDC Motor Drives: A Single Hall Sensor Method and a 160_ Commutation Strategy" IEEE Trans. Energy Convers, 36, 2025-2035. [
DOI:10.1109/TEC.2020.3046183]
18. [18]. Bae, J.; Lee, D.-H. 2018, "Position Control of a Rail Guided Mover Using a Low-Cost BLDC Motor" IEEE Trans. Ind. Appl, 54, 2392-2399. [
DOI:10.1109/TIA.2018.2808930]
19. [19] Carey, K.D.; Zimmerman, N.; Ababei, C. 2019, "Hybrid field oriented and direct torque control for sensorless BLDC motors used in aerial drones" IET Power Electron, 12, 438-449. [
DOI:10.1049/iet-pel.2018.5231]
20. [20] Khazaee, A.; Zarchi, H.A.; Markadeh, G.A.; Hesar, H.M. 2021, "MTPA Strategy for Direct Torque Control of Brushless DC Motor Drive" IEEE Trans. Ind. Electron, 68, 6692-6700. [
DOI:10.1109/TIE.2020.3009576]
21. [21] Buja, G.; Bertoluzzo, M.; Keshri, R. 2015, "Torque Ripple-Free Operation of PM BLDC Drives with Petal-Wave Current Supply" IEEE Trans. Ind. Electron, 62, 4034-4043. [
DOI:10.1109/TIE.2014.2385034]
22. [22] Bosso, A.; Conficoni, C.; Raggini, D.; Tilli, A. 2021, "A Computational-Effective Field-Oriented Control Strategy for Accurate and Efficient Electric Propulsion of Unmanned Aerial Vehicles" IEEE/ASME Trans. Mechatron, 26, 1501-1511. [
DOI:10.1109/TMECH.2020.3022379]
23. [23] Masmoudi, M.; El Badsi, B.; Masmoudi, A. 2014, "Direct Torque Control of Brushless DC Motor Drives with Improved Reliability" IEEE Trans. Ind. Appl, 50, 3744-3753. [
DOI:10.1109/TIA.2014.2313700]
24. [24]. Huang, C.-L.;Wu, C.-J.; Yang, S.-C. 2021, "Full-Region Sensorless BLDC Drive for Permanent Magnet Motor Using Pulse Amplitude Modulation with DC Current Sensing" IEEE Trans. Ind. Electron, 68, 11234-11244. [
DOI:10.1109/TIE.2020.3034859]
25. [25] Yang, L.; Zhu, Z.Q.; Bin, H.; Zhang, Z.; Gong, L. 2021, "Virtual Third Harmonic Back EMF-Based Sensorless Drive for High-Speed BLDC Motors Considering Machine Parameter Asymmetries" IEEE Trans. Ind. Appl, 57, 306-315. [
DOI:10.1109/TIA.2020.3033821]
26. [26] Chen, S.; Liu, G.; Zhu, L. 2017 "Sensorless Control Strategy of a 315 kW High-Speed BLDC Motor Based on a Speed-Independent Flux Linkage Function" IEEE Trans. Ind. Electron, 64, 8607-8617. [
DOI:10.1109/TIE.2017.2698373]
27. [27] Song, X.; Han, B.; Wang, K. 2019, "Sensorless Drive of High-Speed BLDC Motors Based on Virtual Third-Harmonic Back EMF and High-Precision Compensation" IEEE Trans. Power Electron, 34, 8787-8796. [
DOI:10.1109/TPEL.2018.2885031]
28. [28] Xia, K.; Ye, Y.; Ni, J.; Wang, Y.; Xu, P. 2020, "Model Predictive Control Method of Torque Ripple Reduction for BLDC Motor" IEEE Trans. Magn, 56, 1-6. [
DOI:10.1109/TMAG.2019.2950953]
29. [29] De Castro, A.G.; Guazzelli, P.R.U.; dos Santos, S.T.C.A.; De Oliveira, C.M.R.; Pereira,W.C.A.; Monteiro, J.R.B.A. 11-14 November 2018, "Zero Sequence Power Contribution on BLDC Motor Drives. Part II: A FCS-MPC Current Control of Three-Phase Four-Leg Inverter Based Drive" In Proceedings of the 2018 13th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, pp. 1024-1029. [
DOI:10.1109/INDUSCON.2018.8627310]
30. [30] Darba, A.; De Belie, F.; D'Haese, P.; Melkebeek, J.A. 2016, "Improved Dynamic Behavior in BLDC Drives Using Model Predictive Speed and Current Control" IEEE Trans. Ind. Electron, 63, 728-740. [
DOI:10.1109/TIE.2015.2477262]
31. [31] Wen, H.; Yin, J. A. 18-21 October 2020, "Duty Cycle Based Finite-Set Model Predictive Direct Power Control for BLDC Motor Drives" In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, pp.821-825. [
DOI:10.1109/IECON43393.2020.9254958]
32. [32] Trivedi, M.S.; Keshri, R.K. 2020, "Evaluation of Predictive Current Control Techniques for PM BLDC Motor in Stationary Plane" IEEE Access, 8, 46217-46228. [
DOI:10.1109/ACCESS.2020.2978695]
33. [33] Valle, R.L.; de Almeida, P.M.; Ferreira, A.A.; Barbosa, P.G. 2017, "Unipolar PWM predictive current-mode control of a variable-speed low inductance BLDC motor drive" IET Electr. Power Appl, 11, 688-696. [
DOI:10.1049/iet-epa.2016.0421]
34. [34] de Castro, A.G.; Pereira, W.C.D.A.; de Almeida, T.E.P.; de Oliveira, C.M.R.; Monteiro, J.R.B.D.A.; de Oliveira, A.A. 2018, "Improved Finite Control-Set Model-Based Direct Power Control of BLDC Motor With Reduced Torque Ripple" IEEE Trans. Ind. Appl, 54, 4476-4484. [
DOI:10.1109/TIA.2018.2835394]
35. [35] de Castro, A.G.; de Andrade Pereira,W.C.; de Oliveira, C.M.; de Almeida, T.E.; Guazzelli, P.R.; de Almeida Monteiro, J.R.; deOliveira Junior, A.A. 2018, "Finite Control-Set Predictive Power Control of BLDC Drive for Torque Ripple Reduction" IEEE Lat. Am. Trans, 16, 1128-1135. [
DOI:10.1109/TLA.2018.8362147]
36. [36] Ubare, P.; Ingole, D.; Sonawane, D. 2021, "Nonlinear Model Predictive Control of BLDC Motor with State Estimation" IFAC-apersOnLine, 54, 107-112. [
DOI:10.1016/j.ifacol.2021.08.531]
37. [37]. Mohammd Taher, S.; Halvaei Niasar, A.; Abbas Taher, S. 2-4 February 2021, "A New MPC-based Approach for Torque Ripple Reduction in BLDC Motor Drive" In Proceedings of the 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tabriz, Iran, pp. 1-6. [
DOI:10.1109/PEDSTC52094.2021.9405871]
38. [38] Aguirre, M.; Kouro, S.; Rojas, C.A.; Rodriguez, J.; Leno, J.I. 2018, "Switching Frequency Regulation for FCS-MPC Based on a Period Control Approach" IEEE Trans. Ind. Electron, 65, 5764-5773. [
DOI:10.1109/TIE.2017.2777385]
39. [39]. Yang, Y.;Wen, H.; Fan, M.; He, L.; Xie, M.; Chen, R.; Norambuena, M.; Rodriguez, J. 2020, "Multiple-Voltage-Vector Model Predictive Control With Reduced Complexity for Multilevel Inverters" IEEE Trans. Transp. Electrification, 105-117. [
DOI:10.1109/TTE.2020.2973045]
40. [40] Caseiro, L.M.A.; Mendes, A.M.S.; Cruz, S.M.A. 2019, "Dynamically Weighted Optimal Switching Vector Model Predictive Control of Power Converters. IEEE Trans. Ind. Electron, 66, 1235-1245. [
DOI:10.1109/TIE.2018.2829689]
41. [41] Azab, M. 2021, "High performance decoupled active and reactive power control for three-phase grid-tied inverters using model predictive control". Prot. Control. Mod. Power Syst, 6, 25. [
DOI:10.1186/s41601-021-00204-z]
42. [42] Azab, M. 2021, "A finite control set model predictive control scheme for single-phase grid-connected inverters" Renew. Sustain. Energy Rev, 135, 110131. [
DOI:10.1016/j.rser.2020.110131]
43. [43] Lopez-Santos, O.; Dantonio, D.S.; Flores-Bahamonde, F.; Torres-Pinzón, C.A. Hysteresis Control Methods; Chapter 2; Kabalci, E. ,Inverters, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 35-60. [
DOI:10.1016/B978-0-323-90217-5.00002-2]
44. [44] Aguilera, R.P.; Acuna, P.; Konstantinou, G.; Vazquez, S.; Leon, J.I. Basic Control Principles in Power Electronics: Analog and Digital Control Design; Chapter 2; Blaabjerg, F., Ed.; Control of Power Electronic Converters and Systems, Academic Press: Cambridge, MA, USA, 2018; pp. 31-68. [
DOI:10.1016/B978-0-12-805245-7.00002-0]
45. [45] Kouzou, A. Power Factor Correction Circuits. In Power Electronics Handbook, 4th ed.; Chapter 16; Rashid, M.H., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 529-569. [
DOI:10.1016/B978-0-12-811407-0.00017-9]
46. [46] Naseri, F.; Farjah, E.; Schaltz, E.; Lu, K.; Tashakor, N. 2021, "Predictive Control of Low-Cost Three-Phase Four-Switch Inverter-Fed Drives for Brushless DC Motor Applications" IEEE Trans. Circuits Syst. I Regul. Pap, 68, 1308-1318. [
DOI:10.1109/TCSI.2020.3043468]
47. [47] de Almeida, P.M.; Valle, R.L.; Barbosa, P.G.; Montagner, V.F.; Cuk, V.; Ribeiro, P.F. 2021, "Robust Control of a Variable-Speed BLDC Motor Drive" IEEE J. Emerg. Sel. Top. Ind. Electron, 2, 32-41. [
DOI:10.1109/JESTIE.2020.3035055]
48. [48] Baszynski, M.; Pirog, S. 2018, "Unipolar Modulation for a BLDC Motor with Simultaneously Switching of Two Transistors with Closed Loop Control for Four-Quadrant Operation" IEEE Trans. Ind. Inform, 14, 146-155. [
DOI:10.1109/TII.2017.2723962]
49. [49] Gonzalez, J.J.; Montañez, F.G.; Mondragon, V.M.J.; Liceaga-Castro, J.U.; Escarela-Perez, R.; Olivares-Galvan, J.C. 2021, "Parameter Identification of BLDC Motor Using Electromechanical Tests and Recursive Least-Squares Algorithm: Experimental Validation" Actuators, 10, 143. [
DOI:10.3390/act10070143]
50. [50] Xia, C.-L. Permanent Magnet Brushless DC Motor Drives and Controls; JohnWiley & Sons: Singapore; Pte. Ltd.: Solaris, Singapore, 2012; ISBN 978-1-118-18833-0. [
DOI:10.1002/9781118188347]
51. [51] Maharajan, M.P.; Xavier, S.A.E. 2019, "Design of Speed Control and Reduction of Torque Ripple Factor in BLDC Motor Using Spider Based Controller" IEEE Trans. Power Electron, 34, 7826-7837. [
DOI:10.1109/TPEL.2018.2880916]