Volume 17, Issue 4 (Journal of Control, V.17, N.4 Winter 2024)                   JoC 2024, 17(4): 21-33 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirsadraei I, Dehghan Bonadaki M, Mohammadi A. Improving Tracking of Splitting Group Targets Using the Main Target Density in the PMBM Filter. JoC 2024; 17 (4) :21-33
URL: http://joc.kntu.ac.ir/article-1-976-en.html
1- Malek-Ashtar University
Abstract:   (2307 Views)
The Poisson Multi-Bernoulli Mixture filter is one of the most efficient filters for group target tracking. In this filter, target spawning, i.e., the appearance of a new target in the proximity of an existing one in the surveillance area is modeled as a newborn group target. Using this approach may result in missed targets or false alarms. In this paper, profiting from useful information provided by the density of existing group targets, it is possible to predict spawning for all members in the surveillance area. With modification in the birth model in the Poisson density of the filter based on the latest state of detected group targets in the Bernoulli part, the spawning detection probability increases, and the error caused by missed targets is reduced. This approach benefits from the moderated computational complexity property of this filter, particularly for splitting group/point targets, and prevents generating new Bernoulli components for spawned and undetected group targets. The results of Monte Carlo simulations confirm that the modified Poisson Multi-Bernoulli Mixture filter can reduce missed targets and false alarms and increase the reliability of tracking.
Full-Text [PDF 1290 kb]   (228 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2023/10/12 | Accepted: 2024/01/10 | ePublished ahead of print: 2024/01/19 | Published: 2024/01/21

References
1. [1] L. Guerlin, "Approches bayésiennes pour le suivi d'objets étendus appliquées à la lutte anti-drone et au véhicule autonome," Université Grenoble Alpes, 2022.
2. [2] S. Wei, Á. F. Garc'ia-Fernández, and W. Yi, "The Trajectory PHD Filter for Coexisting Point and Extended Target Tracking," arXiv Prepr. arXiv2210.03412, 2022.
3. [3] K. Granström and M. Baum, "A Tutorial on Multiple Extended Object Tracking," 2022, doi: 10.36227/techrxiv.19115858.v1. [DOI:10.36227/techrxiv.19115858.v1]
4. [4] L. Guerlin, B. Pannetier, M. Rombaut, and M. Derome, "Study on group target tracking to counter swarms of drones," in Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX, 2020, vol. 11423, pp. 8-27. [DOI:10.1117/12.2558119]
5. [5] S. Johnsen and A. Tews, "Real-time object tracking and classification using a static camera," in Proceedings of IEEE International Conference on Robotics and Automation, workshop on People Detection and Tracking, 2009, p. 25.
6. [6] L. Bao, F. Li, X. Di, P. Chen, M. Xiao, and J. Bai, "The influence of dual stealth aircraft formation cooperating with aerial bombing on the performance of monopulse radar," in 2020 International Conference on Artificial Intelligence and Education (ICAIE), 2020, pp. 467-470, doi: 10.1109/ICAIE50891.2020.00113. [DOI:10.1109/ICAIE50891.2020.00113]
7. [7] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and data fusion, vol. 11. YBS publishing Storrs, CT, USA:, 2011.
8. [8] S. S. Blackman, "Multiple hypothesis tracking for multiple target tracking," IEEE Aerosp. Electron. Syst. Mag., vol. 19, no. 1, pp. 5-18, 2004. [DOI:10.1109/MAES.2004.1263228]
9. [9] R. P. S. Mahler, Statistical multisource-multitarget information fusion, vol. 685. Artech House Norwood, MA, USA, 2007.
10. [10] R. J. Fitzgerald, "Track biases and coalescence with probabilistic data association," IEEE Trans. Aerosp. Electron. Syst., no. 6, pp. 822-825, 1985. [DOI:10.1109/TAES.1985.310670]
11. [11] T. Kropfreiter, F. Meyer, S. Coraluppi, C. Carthel, R. Mendrzik, and P. Willett, "Track coalescence and repulsion: MHT, JPDA, and BP," in 2021 IEEE 24th International Conference on Information Fusion (FUSION), 2021, pp. 1-8. [DOI:10.23919/FUSION49465.2021.9626958]
12. [12] م. رییس دانایی, "بهبود اجرای فیلتر چگالی فرض احتمال کاردینالی توسط فیلتر ذره ای با متغیر کمکی," پدافند الکترونیک و سایبری, vol. 3, no. 4, pp. 23-41, 1394.
13. [13] R. P. S. Mahler, "Multitarget Bayes filtering via first-order multitarget moments," IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1152-1178, 2003. [DOI:10.1109/TAES.2003.1261119]
14. [14] ا. رجحانی, م. یزدیان دهکردی, and ز. عظیمی فر, "ردیابی اهداف چندگانه ی تصویری در شرایط تصادم بوسیله فیلتر GM-PHD," in هفتمین کنفرانس ماشین بینایی و پردازش تصویر ایران, 1390.
15. [15] R. Mahler, "A theory of PHD filters of higher order in target number," in Signal Processing, Sensor Fusion, and Target Recognition XV, 2006, vol. 6235, pp. 193-204. [DOI:10.1117/12.667083]
16. [16] S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer, "The labeled multi-Bernoulli filter," IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3246-3260, 2014. [DOI:10.1109/TSP.2014.2323064]
17. [17] B.-N. Vo, B.-T. Vo, and D. Phung, "Labeled random finite sets and the Bayes multi-target tracking filter," IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6554-6567, 2014. [DOI:10.1109/TSP.2014.2364014]
18. [18] Y. Zheng, Z. Shi, R. Lu, S. Hong, and X. Shen, "An efficient data-driven particle PHD filter for multitarget tracking," IEEE Trans. Ind. Informatics, vol. 9, no. 4, pp. 2318-2326, 2012. [DOI:10.1109/TII.2012.2228875]
19. [19] C. Fantacci, B.-T. Vo, F. Papi, and B.-N. Vo, "The Marginalized $$backslash$delta $-GLMB Filter," arXiv Prepr. arXiv1501.00926, 2015.
20. [20] J. L. Williams, "Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based MeMBer," IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 1664-1687, 2015. [DOI:10.1109/TAES.2015.130550]
21. [21] Á. F. Garcia-Fernández, J. L. Williams, K. Granström, and L. Svensson, "Poisson multi-Bernoulli mixture filter: Direct derivation and implementation," IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 4, pp. 1883-1901, 2018. [DOI:10.1109/TAES.2018.2805153]
22. [22] Y. Xia, K. Granstrcom, L. Svensson, and Á. F. Garcia-Fernández, "Performance evaluation of multi-Bernoulli conjugate priors for multi-target filtering," in 2017 20th International Conference on Information Fusion (Fusion), 2017, pp. 1-8. [DOI:10.23919/ICIF.2017.8009710]
23. [23] S. Wu, Y. Zhou, Y. Xie, and Q. Xue, "Robust Poisson multi-Bernoulli mixture filter using adaptive birth distributions for extended targets," Digit. Signal Process., vol. 126, p. 103459, 2022, doi: https://doi.org/10.1016/j.dsp.2022.103459 [DOI:10.1016/j.dsp.2022.103459.]
24. [24] S. H. Rezatofighi, S. Gould, B. T. Vo, B.-N. Vo, K. Mele, and R. Hartley, "Multi-target tracking with time-varying clutter rate and detection profile: Application to time-lapse cell microscopy sequences," IEEE Trans. Med. Imaging, vol. 34, no. 6, pp. 1336-1348, 2015. [DOI:10.1109/TMI.2015.2390647]
25. [25] م. رییس دانایی, "اجرای فیلتر چگالی فرض احتمال توسط فیلتر ذره ای با متغیر کمکی و شدت زایش وفقی," پدافند الکترونیکی و سایبری, vol. سال پنجم, pp. 70-75, 1396.
26. [26] B. Ristic, D. Clark, B.-N. Vo, and B.-T. Vo, "Adaptive target birth intensity for PHD and CPHD filters," IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 2, pp. 1656-1668, 2012. [DOI:10.1109/TAES.2012.6178085]
27. [27] Á. F. Garcia-Fernández, Y. Xia, and L. Svensson, "A comparison between PMBM Bayesian track initiation and labelled RFS adaptive birth," in 2022 25th International Conference on Information Fusion (FUSION), 2022, pp. 1-8. [DOI:10.23919/FUSION49751.2022.9841338]
28. [28] H.-Y. Zhou, "Sequential Monte Carlo implementation and state extraction of the group probability hypothesis density filter for partly unresolvable group targets-tracking problem," IET Radar, Sonar Navig., vol. 4, no. 5, pp. 685-702(17), Oct. 2010. [DOI:10.1049/iet-rsn.2009.0109]
29. [29] K. Granström and U. Orguner, "On Spawning and Combination of Extended / Group Targets Modeled With Random Matrices," vol. 61, no. 3, pp. 678-692, 2013. [DOI:10.1109/TSP.2012.2230171]
30. [30] K. G. Murty, "An algorithm for ranking all the assignments in order of increasing cost," Oper. Res., vol. 16, no. 3, pp. 682-687, 1968. [DOI:10.1287/opre.16.3.682]
31. [31] A. S. Rahmathullah, A. F. Garcia-Fernandez, and L. Svensson, "Generalized optimal sub-pattern assignment metric," in 2017 20th International Conference on Information Fusion (Fusion), 2017, doi: 10.23919/icif.2017.8009645. [DOI:10.23919/ICIF.2017.8009645]
32. [32] Y. Xia, K. Granström, L. Svensson, Á. F. Garcia-Fernández, and J. L. Williams, "Extended target Poisson multi-Bernoulli mixture trackers based on sets of trajectories," in 2019 22th International Conference on Information Fusion (FUSION), 2019, pp. 1-8. [DOI:10.23919/FUSION43075.2019.9011181]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb