Volume 12, Issue 1 (Journal of Control, V.12, N.1 Spring 2018)                   JoC 2018, 12(1): 25-37 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahdan A, Bolandi H, Abedi M. Design of On Board Calibration Algorithms of Satellite Magnetometer based on Two Stage Centered Solution and Kalman Filter Methods. JoC 2018; 12 (1) :25-37
URL: http://joc.kntu.ac.ir/article-1-503-en.html
1- Iran University of Science and Technology
2- Shahid Beheshty University
Abstract:   (15510 Views)

Magnetometer is one of the most important sensors used in the satellite attitude determination and control system. Due to occurrence of various errors when the satellite is separated from the launcher and also during its rotation in the orbit, it is necessary to re-adjust onboard the sensor parameters. For this purpose, some solutions are proposed in this paper in which the satellite current attitude is not required. In this regard, first a magnetometer model is presented that despite conventional models; it includes nonlinearity, hysteresis and data quantization effects, permeability and installation error. Then, for sensor onboard calibration purposes, two stages-offline and two-stage online series structures are suggested. In the offline case, the centered solution and Levenberg Marquardt methods have been integrated. Also, the extended and unscented Kalman filters are integrated for online case. Utilizing the suggested algorithms, different errors including bias, scale factor and installation errors are simultaneously determined and also the accuracy is improved compared to the similar works. The simulation results for a Leo satellite show that the sensor parameters are derived with acceptable accuracy. Accordingly, it will be illustrated that the centered solution method has lower computational load and shorter time convergence, but it has lower accuracy with respect to online methodology.  

Full-Text [PDF 1022 kb]   (3275 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2017/07/17 | Accepted: 2017/11/30 | Published: 2018/04/10

1. Jin J, Baoyin HX, Li JF, "Attitude scheme for satellite with defective inertia characteristic", Aircr Eng Aerosp Technol, pp. 422–31, 2013. [DOI:10.1108/AEAT-05-2012-0067]
2. Ran DC, Sheng T, Cao L, Chen XQ, Zhao Y, "Attitude control system design and on-orbit performance analysis of nano-satellite", Chin J Aeronaut, pp. 593–601, 2013.
3. Han K, Wang H, Tu BJ, Jin ZH, "Pico-satellite autonomous navigation with magnetometer and sun sensor data", Chin J Aeronaut, pp. 46–54, 2011.
4. ح. بلندی، ب. قربانی واقعی، م. اسماعیل زاده، دینامیک و کنترل وضعیت ماهواره، انتشارات دانشگاه علم و صنعت، 1392 .
5. D. Gebre-Egziabher, G. Elkaim, J. Powell, B. Parkinson, "Calibration of strapdown magnetometers in magnetic field domain", J. Aerospace Eng, 19 (2), pp. 87–102, 2006. [DOI:10.1061/(ASCE)0893-1321(2006)19:2(87)]
6. T. Pylvanainen, "Automatic and adaptive calibration of 3D field sensors", Applied Mathematical Modelling 32, pp. 575–587, 2007. [DOI:10.1016/j.apm.2007.02.004]
7. H. Pang, D. Chen, M. Pan, S. Luo, Q. Zang, J. Li, C. Wan, J. Wang, F. Luo and W. Wang, "Calibration of three-axis magnetometer with differential evolution algorithm," Journal of Magnetism and Magnetic Materials, vol 346, pp. 5-10, 2013. [DOI:10.1016/j.jmmm.2013.06.051]
8. H. Pang, D. Chen, M. Pan, S. Luo, Q. Zang, J. Li and F. Luo," A New Calibration Method of Three Axis Magnetometer with Nonlinearity Suppression,"IEEE TRANSACTION ON MAGNET, vol. 49, no. 9, 2013.
9. S.A.H Tabatabaei, A. Gluhak and R. Tafazoli,"A Fast Calibration Method for Triaxial Magnetometers," IEEE Transaction on Instrument and Measurement, vol. 62, no. 11, pp. 2929-2937, 2013. [DOI:10.1109/TIM.2013.2263913]
10. Yang, D., You, Z., Li, B., Duan, W., & Yuan, B., "Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary", Sensors, 17(6), 2017. [DOI:10.3390/s17061223]
11. Jung H, Psiaki ML, "Tests of magnetometer/sun-sensor orbit determination using flight data", J Guide, Control Dyn, pp. 582–90, 2002.
12. Takahashi F, Shimizu H, Matsushima M, Shibuya H, Matsuoka S, Nakazawa S, et al, "In-orbit calibration of the lunar magnetometer onboard SELENE (KAGUYA)", Earth Planets Space, pp. 1269–74, 2009. [DOI:10.1186/BF03352979]
13. Li W, Wang JL, "Magnetic sensors for navigation applications: an overview", J Navig, pp.263–75, 2014. [DOI:10.1017/S0373463313000544]
14. F.L. Markley, J.L. Crassidis, "Fundamental of spacecraft Attitude Determination and Control", Springer, 2014. [DOI:10.1007/978-1-4939-0802-8]
15. Alonso R, Shuster MD, "Attitude-independent magnetometer-bias determination: a survey", J Astronaut Sci, pp. 453–75, 2002.
16. Alonso R, Shuster MD, "TWOSTEP: a fast robust algorithm for attitude-independent magnetometer-bias determination", J Astronaut Sci, pp. 433–51, 2002.
17. Alonso R, Shuster MD, "Complete linear attitude-Independent magnetometer calibration", J Astronaut Sci, pp. 477–90,2002.
18. Crassidis JL, Lai KL, Harman RR, "Real-time attitude-independent three-axis magnetometer calibration", J Guid Control Dyn pp. 115–20, 2005. [DOI:10.2514/1.6278]
19. Soken HE, Hajiyev C, "UKF based in-flight calibration of magnetometers and rate gyros for pico satellite attitude determination", Asian J Control, pp. 707–15, 2012. [DOI:10.1002/asjc.368]
20. Soken HE, Hajiyev C, "UKF-based reconfigurable attitude parameters estimation and magnetometer calibration", IEEE Trans Aerosp Electron Syst, pp. 2614–27, 2012. [DOI:10.1109/TAES.2012.6237612]
21. Juang JC, Tsai YF, Tsai CT, "Design and verification of a magnetometer-based orbit determination and sensor calibration algorithm", Aerosp Sci Technol, pp. 47–54, 2012. [DOI:10.1016/j.ast.2011.05.003]
22. Z. Zhen, X. Jianping, J. Jin, "On-orbit real time magnetometer bias determination for micro-satellite without attitude information", Chinese Journal of Aeronautics, pp. 1503-1509, 2015.
23. F. Landis Markley, John L. Crassidis, "Fundamental of spacecraft attitude determination and control", Springer, 2014.
24. Abdelrahman, M., Chang, I., & Park, S. Y.,"Magnetic torque attitude control of a satellite using the state-dependent Riccati equation technique", International Journal of Non-Linear Mechanics, 46(5), pp. 758-771, 2011. [DOI:10.1016/j.ijnonlinmec.2011.02.009]
25. E. Thébault., C.C. Finlay, C.D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, L. Brocco, E. Canet, "International geomagnetic reference field: the 12th generation. Earth", Planets and Space, vol. 67, no. 1, pp.1-19, 2015

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb