Volume 15, Issue 3 (Journal of Control, V.15, N.3 Fall 2021)                   JoC 2021, 15(3): 35-46 | Back to browse issues page


XML Persian Abstract Print


1- K.N.Toosi University of Technology
Abstract:   (4808 Views)
This paper presents design and implementation of Model Based Predictive Controller (MPC) for a novel Bi-Rotor Moving Mass Controlled (MMC) Unmanned Aerial Vehicle (UAV). Due to the strict constrained control inputs in this type of UAV, it is necessary to take into account the constrained controller design and un-constrained control methods are not applicable. MPC controller which is designed based on the linear model by considering control constraints, is implemented on the nonlinear model of the UAV’s planar motion and compared with LQR controller, the simulation results show significant performance of this controller in control of the UAV while respecting control constraints.
Full-Text [PDF 1320 kb]   (1030 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2020/11/28 | Accepted: 2021/04/11 | ePublished ahead of print: 2021/04/25 | Published: 2022/02/1

References
1. [1] S. Darvishpoor, J. Roshanian, A. Raissi, and M. Hassanalian, "Configurations, flight mechanisms, and applications of unmanned aerial systems: A review," Prog. Aerosp. Sci., vol. 121, p. 100694, Feb. 2020, doi: 10.1016/j.paerosci.2020.100694. [DOI:10.1016/j.paerosci.2020.100694]
2. [2] S. Darvishpoor and J. Roshanian, "A Survey on Unmanned Aerial Vehicles : Scheme Approach," in The 18th International Conference of Iranian Aerospace Society, 2020.
3. [3] M. Hassanalian and A. Abdelkefi, "Classifications, applications, and design challenges of drones: A review," Prog. Aerosp. Sci., vol. 91, pp. 99-131, May 2017, doi: 10.1016/j.paerosci.2017.04.003. [DOI:10.1016/j.paerosci.2017.04.003]
4. [4] S. Darvishpoor, J. Roshanian, and M. Tayefi, "A novel concept of VTOL bi-rotor UAV based on moving mass control," Aerosp. Sci. Technol., p. 106238, Sep. 2020, doi: 10.1016/j.ast.2020.106238. [DOI:10.1016/j.ast.2020.106238]
5. [5] J. Li, C. Gao, C. Li, and W. Jing, "A survey on moving mass control technology," Aerosp. Sci. Technol., vol. 82-83, no. September, pp. 594-606, 2018, doi: 10.1016/j.ast.2018.09.033. [DOI:10.1016/j.ast.2018.09.033]
6. [6] H. Mohammadi Daniali, "Fast Nonlinear Model Predictive Control of Quadrotors: Design and Experiments," 2020, [Online]. Available: http://hdl.handle.net/10012/15519. [DOI:10.32393/csme.2020.1180]
7. [7] E. D'Amato, M. Mattei, and I. Notaro, "Distributed Reactive Model Predictive Control for Collision Avoidance of Unmanned Aerial Vehicles in Civil Airspace," J. Intell. Robot. Syst., vol. 97, no. 1, pp. 185-203, Jan. 2020, doi: 10.1007/s10846-019-01047-5. [DOI:10.1007/s10846-019-01047-5]
8. [8] A. Dixit, A. Misra, and S. E. Talole, "Model Predictive Control based Collision Avoidance Controller for Octocopter," in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Feb. 2020, pp. 630-635, doi: 10.1109/SPIN48934.2020.9071236. [DOI:10.1109/SPIN48934.2020.9071236]
9. [9] Y. Wang, H. Cai, J. Zhang, and X. Li, "Disturbance Attenuation Predictive Optimal Control for Quad-Rotor Transporting Unknown Varying Payload," IEEE Access, vol. 8, pp. 44671-44686, 2020, doi: 10.1109/ACCESS.2020.2977681. [DOI:10.1109/ACCESS.2020.2977681]
10. [10] D. Bhattacharjee and K. Subbarao, "Robust Control Strategy for Quadcopters using Sliding Mode Control and Model Predictive Control," in AIAA Scitech 2020 Forum, Jan. 2020, doi: 10.2514/6.2020-2071. [DOI:10.2514/6.2020-2071]
11. [11] N. Miladi, H. Dimassi, S. Hadj Said, and F. M'Sahli, "Explicit nonlinear model predictive control tracking control based on a sliding mode observer for a quadrotor subject to disturbances," Trans. Inst. Meas. Control, vol. 42, no. 2, pp. 214-227, Jan. 2020, doi: 10.1177/0142331219865816. [DOI:10.1177/0142331219865816]
12. [12] S. Darvishpoor, J. Roshanian, and T. Yasini, "Model Predictive Control Based on Intelligent model for Low Earth Orbit Satellite," J. Technol. Aerosp. Eng., vol. 5, no. 1, 2021.
13. [13] T. Haus, M. Orsag, and S. Bogdan, "Design considerations for a large quadrotor with moving mass control," 2016 Int. Conf. Unmanned Aircr. Syst. ICUAS 2016, pp. 1327-1334, 2016, doi: 10.1109/ICUAS.2016.7502680. [DOI:10.1109/ICUAS.2016.7502680]
14. [14] D. Bertsekas, A. Nedic, and A. E. Ozdaglar, "Convex Analysis and Optimization."
15. [15] C. Schmid and L. T. Biegler, "Quadratic programming methods for reduced hessian SQP," Comput. Chem. Eng., vol. 18, no. 9, pp. 817-832, Sep. 1994, doi: 10.1016/0098-1354(94)E0001-4. [DOI:10.1016/0098-1354(94)E0001-4]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.