Type of Article: Research paper |
Subject:
Special

Received: 2021/10/31 | Accepted: 2022/08/1 | ePublished ahead of print: 2022/09/13

Received: 2021/10/31 | Accepted: 2022/08/1 | ePublished ahead of print: 2022/09/13

1. [1] L. Mo, H. Ho, Y. Yu, 2020, "Distributed heterogeneous multi-agent networks optimization with nonconvex velocity constraints", Journal of the Franklin Institute, vol. 357, no.11, pp. 7139-7158. [DOI:10.1016/j.jfranklin.2020.05.043]

2. [2] T. F. Coleman, A. Liao, 2021, "An efficient trust region method for unconstrained discrete-time optimal control problems", Computational Optimization and Applications, Vol. 4, no. 8, pp. 47-66. [DOI:10.1007/BF01299158]

3. [3] M. A. El-Shorbagy, A. M. El-Refaey, 2021, "Hybridization of grasshopper optimization algorithm with genetic algorithm for solving system of non-linear equations", IEEE Access, vol. 08, no. 10, pp. 1121-1136.

4. [4] R. S. Dembo, S. C. Eisenstat, T. Steihaug,1982, "Inexact Newton methods", SIAM journal on numerical analysis, vol. 19, pp. 400-408. [DOI:10.1137/0719025]

5. [5] Jorge. Nocedal, Stephen. J. Wright, "Numerical optimization", Springer, Mathematics subject classification, Second edition, 2006.

6. [6] T. F. Coleman, A. Liao, 1995, "An efficient trust region method for unconstrained discrete-time optimal control problems", Computational optimization and applications, vol. 4, pp. 47-66. [DOI:10.1007/BF01299158]

7. [7] S. Sen, S. J. Yakowitz, 1987, "A quasi-Newton differential dynamic programming algorithm for discrete-time optimal control", Automatica, vol. 23, no. 6, pp. 749-752. [DOI:10.1016/0005-1098(87)90031-8]

8. [8] T. Carraro, S. Dorsam, S. Frei, D. Schwartz, 2018, "An adaptive Newton algorithm for optimal control problem with application to optimal electrode design", Journal of Optimization theory and application, vol. 177, pp. 498-534. [DOI:10.1007/s10957-018-1242-4]

9. [9] I. E. Livieris, V. Tampakas, P. Pintelas, 2018, "A descent hybrid conjugate gradient method based on the memoryless BFGS update" Numerical Algorithms, vol. 79, pp. 1169-1185. [DOI:10.1007/s11075-018-0479-1]

10. [10] B. Houska, H. Jaochim Ferreau, M. Diehl, 2011, "An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range", Automatica, vol. 47, no. 10, pp. 2279-2285. [DOI:10.1016/j.automatica.2011.08.020]

11. [11] S. Gros, M. Zanon, R. Quirynen, A. bemporad, M. Diehl, 2016, "From linear to nonlinear MPC: bridging the gap via the real-time iteration", vol. 93, no. 1, pp. 62-80. [DOI:10.1080/00207179.2016.1222553]

12. [12] P. Falugi, D. Q. Mayne, 2014, "Getting robustness against unstructured uncertainty: A Tube-based MPC approach", IEEE transaction on automatic control, vol. 59, no. 5, pp. 1290-1295. [DOI:10.1109/TAC.2013.2287727]

13. [13] E. Nejabat, A. Nikoofard, 2021, "Switched robust model predictive based controller for UAV swarm system" IEEE, 29th Iranian conference of electrical engineering (ICEE), pp. 721-725. [DOI:10.1109/ICEE52715.2021.9544123]

14. [14] Z. Qiu, N, Jiang, 2021, "An ellipsoidal Newton's iteration method of nonlinear structural systems with uncertain but bounded parameters", Computer method in applied mechanics and engineering, vol. 373, no. 501, pp. 788-808. [DOI:10.1016/j.cma.2020.113501]

15. [15] X. Feng, S. Cairano, R. Quirenen, 2020, "Inexact adjoint-based SQP algorithm for real time stochastic nonlinear MPC" IFAC, vol. 53, no. 2, pp. 6529-6535. [DOI:10.1016/j.ifacol.2020.12.068]

16. [16] A. Jodaei, J. Saffar-Ardabili, 2021, "Controller design for containment problem of a class of multi-agent systems with nonlinear identical dynamics and fixed directed graph", Journal of Control, vol. 14, no. 4, pp. 198-209. [DOI:10.52547/joc.14.4.133]

17. [17] D. Xie, S. Xu, Y. Chu, Y. Zou, 2015, "Event-triggered average consensus for multi-agent systems with nonlinear dynamics and switching topology", Journal of the Franklin institute, vol. 352, no. 3, pp. 1080-1098. [DOI:10.1016/j.jfranklin.2014.11.004]

18. [18] D. Yang, W. Ren, X. Liu, W. Chen, 2016, "Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs", Automatica, vol. 69, pp. 242-249. [DOI:10.1016/j.automatica.2016.03.003]

19. [19] Zhizheng. Hou, 2016, "Modeling and formation controller design for multi-quadrotor systems with leader follower configuration", M.Sc. Thesis, Universite de Technologie de Copiegne.

20. [۲۰] محمدرضا همایینژاد، محمد حسین سعیدی مستقیم، فرنود عرب، ۱۴۰۱، "بازشناخت الگوی نیروهای یاتاقانی محور چرخان صلب دارای نامیراییهای جرمی"، نشریه مهندسی مکانیک امیرکبیر، در حال انتشار.

21. [21] Norman. Biggs, "Algebraic Graph Theory" Cambridge University Press, Second edition, 1993.

22. [22] J. Lofberg, 2004, "YALMIP: A toolbox for modeling and optimization in MATLAB", IEEE International Conference on Robotics and Automation, pp. 284-289.

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |