1. [1] D. T. Chard et al., "Mind the gap: from neurons to networks to outcomes in multiple sclerosis," Nat. Rev. Neurol., vol. 17, no. 3, pp. 173-184, 2021. [
DOI:10.1038/s41582-020-00439-8]
2. [2] M. M. Schoonheim, T. A. Broeders, and J. J. Geurts, "The network collapse in multiple sclerosis: An overview of novel concepts to address disease dynamics," NeuroImage Clin., p. 103108, 2022. [
DOI:10.1016/j.nicl.2022.103108]
3. [3] C. T. Briels, D. N. Schoonhoven, C. J. Stam, H. de Waal, P. Scheltens, and A. A. Gouw, "Reproducibility of EEG functional connectivity in Alzheimer's disease," Alzheimers Res. Ther., vol. 12, no. 1, pp. 1-14, 2020. [
DOI:10.1186/s13195-020-00632-3]
4. [4] M. Sjøgård et al., "Brain dysconnectivity relates to disability and cognitive impairment in multiple sclerosis," Hum. Brain Mapp., vol. 42, no. 3, pp. 626-643, 2021. [
DOI:10.1002/hbm.25247]
5. [5] G. Castellazzi et al., "Functional connectivity alterations reveal complex mechanisms based on clinical and radiological status in mild relapsing remitting multiple sclerosis," Front. Neurol., vol. 9, p. 690, 2018. [
DOI:10.3389/fneur.2018.00690]
6. [6] M. M. Schoonheim et al., "Disability in multiple sclerosis is related to thalamic connectivity and cortical network atrophy," Mult. Scler. J., vol. 28, no. 1, pp. 61-70, 2022. [
DOI:10.1177/13524585211008743]
7. [7] M. B. Vlaicu, "Epilepsy in multiple sclerosis as a network disease," Mult. Scler. Relat. Disord., vol. 36, p. 101390, 2019. [
DOI:10.1016/j.msard.2019.101390]
8. [8] M.-V. A. Duong et al., "Altered functional connectivity related to white matter changes inside the working memory network at the very early stage of MS," J. Cereb. Blood Flow Metab., vol. 25, no. 10, pp. 1245-1253, 2005. [
DOI:10.1038/sj.jcbfm.9600122]
9. [9] W. Majeed, M. Magnuson, and S. D. Keilholz, "Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat," J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med., vol. 30, no. 2, pp. 384-393, 2009. [
DOI:10.1002/jmri.21848]
10. [10] K. J. Friston, "Functional and effective connectivity: a review," Brain Connect., vol. 1, no. 1, pp. 13-36, 2011. [
DOI:10.1089/brain.2011.0008]
11. [11] R. M. Hutchison et al., "Dynamic functional connectivity: promise, issues, and interpretations," Neuroimage, vol. 80, pp. 360-378, 2013. [
DOI:10.1016/j.neuroimage.2013.05.079]
12. [12] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, and V. D. Calhoun, "Tracking whole-brain connectivity dynamics in the resting state," Cereb. Cortex, vol. 24, no. 3, pp. 663-676, 2014. [
DOI:10.1093/cercor/bhs352]
13. [13] C. Chang, Z. Liu, M. C. Chen, X. Liu, and J. H. Duyn, "EEG correlates of time-varying BOLD functional connectivity," Neuroimage, vol. 72, pp. 227-236, 2013. [
DOI:10.1016/j.neuroimage.2013.01.049]
14. [14] E. Tagliazucchi, F. Von Wegner, A. Morzelewski, V. Brodbeck, and H. Laufs, "Dynamic BOLD functional connectivity in humans and its electrophysiological correlates," Front. Hum. Neurosci., vol. 6, p. 339, 2012. [
DOI:10.3389/fnhum.2012.00339]
15. [15] G. J. Thompson et al., "Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually," Hum. Brain Mapp., vol. 34, no. 12, pp. 3280-3298, 2013. [
DOI:10.1002/hbm.22140]
16. [16] C. Chang and G. H. Glover, "Time-frequency dynamics of resting-state brain connectivity measured with fMRI," Neuroimage, vol. 50, no. 1, pp. 81-98, 2010. [
DOI:10.1016/j.neuroimage.2009.12.011]
17. [17] D. A. Handwerker, V. Roopchansingh, J. Gonzalez-Castillo, and P. A. Bandettini, "Periodic changes in fMRI connectivity," Neuroimage, vol. 63, no. 3, pp. 1712-1719, 2012. [
DOI:10.1016/j.neuroimage.2012.06.078]
18. [18] Z. Fu et al., "Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: an application to schizophrenia," Neuroimage, vol. 180, pp. 619-631, 2018. [
DOI:10.1016/j.neuroimage.2017.09.035]
19. [19] M. Díez-Cirarda et al., "Dynamic functional connectivity in Parkinson's disease patients with mild cognitive impairment and normal cognition," NeuroImage Clin., vol. 17, pp. 847-855, 2018. [
DOI:10.1016/j.nicl.2017.12.013]
20. [20] P. Tewarie et al., "Explaining the heterogeneity of functional connectivity findings in multiple sclerosis: An empirically informed modeling study," Hum. Brain Mapp., vol. 39, no. 6, pp. 2541-2548, 2018. [
DOI:10.1002/hbm.24020]
21. [21] K. Lee, S. Tak, and J. C. Ye, "A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion," IEEE Trans. Med. Imaging, vol. 30, no. 5, pp. 1076-1089, 2010. [
DOI:10.1109/TMI.2010.2097275]
22. [22] C.-Y. Wee, P.-T. Yap, D. Zhang, L. Wang, and D. Shen, "Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification," Brain Struct. Funct., vol. 219, no. 2, pp. 641-656, 2014. [
DOI:10.1007/s00429-013-0524-8]
23. [23] J. Lv et al., "Sparse representation of whole-brain fMRI signals for identification of functional networks," Med. Image Anal., vol. 20, no. 1, pp. 112-134, 2015. [
DOI:10.1016/j.media.2014.10.011]
24. [24] J. Lv et al., "Assessing effects of prenatal alcohol exposure using group-wise sparse representation of fMRI data," Psychiatry Res. Neuroimaging, vol. 233, no. 2, pp. 254-268, 2015. [
DOI:10.1016/j.pscychresns.2015.07.012]
25. [25] R. Yu, H. Zhang, L. An, X. Chen, Z. Wei, and D. Shen, "Connectivity strength-weighted sparse group representation-based brain network construction for M CI classification," Hum. Brain Mapp., vol. 38, no. 5, pp. 2370-2383, 2017. [
DOI:10.1002/hbm.23524]
26. [26] X. Wang, Y. Ren, and W. Zhang, "Depression disorder classification of fMRI data using sparse low-rank functional brain network and graph-based features," Comput. Math. Methods Med., vol. 2017, 2017. [
DOI:10.1155/2017/3609821]
27. [27] S.-J. Lin et al., "Both stationary and dynamic functional interhemispheric connectivity are strongly associated with performance on cognitive tests in multiple sclerosis," Front. Neurol., vol. 11, p. 407, 2020. [
DOI:10.3389/fneur.2020.00407]
28. [28] C. H. Polman et al., "Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria," Ann. Neurol., vol. 69, no. 2, pp. 292-302, 2011. [
DOI:10.1002/ana.22366]
29. [29] F. Azarmi, S. N. M. Ashtiani, A. Shalbaf, H. Behnam, and M. R. Daliri, "Granger causality analysis in combination with directed network measures for classification of MS patients and healthy controls using task-related fMRI," Comput. Biol. Med., vol. 115, p. 103495, 2019. [
DOI:10.1016/j.compbiomed.2019.103495]
30. [30] S. Hao, C. Yang, Z. Li, and J. Ren, "Distinguishing patients with temporal lobe epilepsy from normal controls with the directed graph measures of resting-state fMRI," Seizure, vol. 96, pp. 25-33, 2022. [
DOI:10.1016/j.seizure.2022.01.007]
31. [31] J. Huang et al., "Altered functional connectivity in white and gray matter in patients with multiple sclerosis," Front. Hum. Neurosci., vol. 14, p. 563048, 2020. [
DOI:10.3389/fnhum.2020.563048]
32. [32] M. Rosoł, M. Młyńczak, and G. Cybulski, "Granger causality test with nonlinear neural-network-based methods: Python package and simulation study," Comput. Methods Programs Biomed., vol. 216, p. 106669, Apr. 2022. [
DOI:10.1016/j.cmpb.2022.106669]
33. [33] L.-Q. Zhou et al., "Artificial intelligence in medical imaging of the liver," World J. Gastroenterol., vol. 25, no. 6, p. 672, 2019. [
DOI:10.3748/wjg.v25.i6.672]
34. [34] Q. Zhang et al., "Comparing the effectiveness of brain structural imaging, resting-state fMRI, and naturalistic fMRI in recognizing social anxiety disorder in children and adolescents," Psychiatry Res. Neuroimaging, vol. 323, p. 111485, 2022. [
DOI:10.1016/j.pscychresns.2022.111485]
35. [35] F. Tsouki and A. Williams, "Multifaceted involvement of microglia in gray matter pathology in multiple sclerosis," Stem Cells, vol. 39, no. 8, pp. 993-1007, 2021. [
DOI:10.1002/stem.3374]
36. [36] R. Hemmatjo, M. Motamedzade, M. Aliabadi, O. Kalatpour, and M. Farhadian, "The effects of multiple firefighting activities on information processing and work performance in a smoke‐diving room: An intervention study," Hum. Factors Ergon. Manuf. Serv. Ind., vol. 27, no. 6, pp. 261-267, Nov. 2017. [
DOI:10.1002/hfm.20709]
37. [37] M. Zhang, X. Huang, B. Li, H. Shang, and J. Yang, "Gray matter structural and functional alterations in idiopathic blepharospasm: A multimodal meta-analysis of VBM and functional neuroimaging studies," Front. Neurol., vol. 13, p. 889714, 2022. [
DOI:10.3389/fneur.2022.889714]
38. [38] V. A. Politakis, A. Slana Ozimič, and G. Repovš, "Cognitive control challenge task across the lifespan," Front. Psychol., vol. 12, p. 789816, 2022. [
DOI:10.3389/fpsyg.2021.789816]
39. [39] S. Spiteri, T. Hassa, D. Claros-Salinas, M. Schoenfeld, and C. Dettmers, "Functional MRI changes illustrating cognitive fatigue in patients with multiple sclerosis," in 25. Rehabilitationswissenschaftliches Kolloquium, 2016, p. 370. Accessed: Dec. 04, 2023. [
DOI:10.1177/1352458517743090]
40. [40] M. A. Rocca, M. M. Schoonheim, P. Valsasina, J. J. Geurts, and M. Filippi, "Task-and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective," NeuroImage Clin., vol. 35, p. 103076, 2022. [
DOI:10.1016/j.nicl.2022.103076]
41. [41] O. L. Gamboa et al., "Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks," Neuroimage, vol. 94, pp. 385-395, 2014. [
DOI:10.1016/j.neuroimage.2013.12.008]
42. [42] A. D. Savva, G. D. Mitsis, and G. K. Matsopoulos, "Assessment of dynamic functional connectivity in resting‐state fMRI using the sliding window technique," Brain Behav., vol. 9, no. 4, p. e01255, Apr. 2019. [
DOI:10.1002/brb3.1255]