Volume 18, Issue 2 (Journal of Control, V.18, N.2 Summer 2024)                   JoC 2024, 18(2): 25-36 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Katoozian D, Hosseini-Nejad H, Abolghasemi M. A Neural Decoding Method Based on Neurons Activities Pattern Recognition for Implantable Intra-cortical BMIs. JoC 2024; 18 (2) :25-36
URL: http://joc.kntu.ac.ir/article-1-1015-en.html
1- Faculty of Electrical Engineering of K.N. Toosi University of Technology
2- Faculty of Electrical and computer of Tehran Uinversity
Abstract:   (2280 Views)
Converting motor intention to a machine command is called decoding in Brain Machine Interface (BMI) field. Despite recent advances, decoding remains among the most challenging steps in BMI. Furthermore, the majority of algorithms currently used in decoding require a computer, as a result of their high computational complexity. However, due to the size and power consumption of computers, they are not practical for implantable BMI systems. To address this issue, this paper proposes a novel approach based on hyperdimensional computing. This approach involves the conversion of the input space to binary, followed by the selection of the most similar vector to the answer. The proposed method is evaluated using a real dataset recorded from the Frontal Eye Field (FEF) of two male rhesus monkeys, with eight possible angles as the output space. The results demonstrate an accuracy rate of 51.5% with very low computational complexity. Furthermore, the proposed algorithm is implemented on a field-programmable gate array, indicating that it is a practical choice for real-time implantable BMI applications requiring a low computational cost method with a medium level of accuracy.
Full-Text [PDF 864 kb]   (181 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2023/12/10 | Accepted: 2024/03/13 | ePublished ahead of print: 2024/05/4 | Published: 2024/09/20

References
1. [ ]. Shaikh S, So R, Sibindi T, Libedinsky C, Basu A., "Towards Intelligent Intracortical BMI (i2BMI): Low-Power Neuromorphic Decoders That Outperform Kalman Filters," IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1615-1624, Dec. 2019. doi: 10.1109/TBCAS.2019.2944486. [DOI:10.1109/TBCAS.2019.2944486]
2. [ ]. Armour BS, Courtney-Long EA, Fox MH, Fredine H, Cahill A., "Prevalence and causes of paralysis-United States, 2013," American journal of public health, vol. 106, no. 10, pp. 1855-1857, 2016. [DOI:10.2105/AJPH.2016.303270]
3. [ ]. Shen X, Zhang X, Huang Y, Chen S, Yu Z, Wang Y., "Intermediate Sensory Feedback Assisted Multi-Step Neural Decoding for Reinforcement Learning Based Brain-Machine Interfaces," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2834-2844, doi: 10.1109/TNSRE.2022.3210700, 2022. [DOI:10.1109/TNSRE.2022.3210700]
4. [ ]. García-Murillo DG, Álvarez-Meza AM, Castellanos-Dominguez CG. "KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification" Diagnostics, vol. 13, no. 6, 2023 Mar 16. [DOI:10.3390/diagnostics13061122]
5. [ ]. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H., "A spelling device for the paralyzed," Nature, vol. 398, no. 6725, pp. 297-298, 1999. [DOI:10.1038/18581]
6. [ ]. Perdikis S, Leeb R, Williamson J, Ramsay A, Tavella M, Desideri L, Hoogerwerf EJ, Al-Khodairy A, Murray-Smith R, d R Millán J., "Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller," Journal of neural engineering, vol. 11, no. 3, 2014. [DOI:10.1088/1741-2560/11/3/036003]
7. [ ]. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB., "High-performance neuroprosthetic control by an individual with tetraplegia," The Lancet, vol. 381, no. 9866, pp. 557-564, 2013. [DOI:10.1016/S0140-6736(12)61816-9]
8. [ ]. Galán F,Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J,Millán JD., "A brain-actuated wheelchair: Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots," Clinical neurophysiology, vol. 119, no. 9, pp. 2159-2169, 2008. [DOI:10.1016/j.clinph.2008.06.001]
9. [ ]. Leeb R, Tonin L, Rohm M, Desideri L, Carlson T, Millan JD. "Towards independence: A BCI telepresence robot for people with severe motor disabilities," Proceedings of the IEEE, vol. 103, no. 6, pp. 969-982, 2015. [DOI:10.1109/JPROC.2015.2419736]
10. [ ] Sharma R, Kim M, Gupta A., "Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model." Biomedical Signal Processing and Control, vol. 71, 2022. [DOI:10.1016/j.bspc.2021.103101]
11. [ ]. Sui Y, Yu H, Zhang C, Chen Y, Jiang C, Li L., "Deep brain-machine interfaces: sensing and modulating the human deep brain," National Science Review, vol. 9, no. 10, October 2022. [DOI:10.1093/nsr/nwac212]
12. [ ]. Syrov N, Yakovlev L, Nikolaeva V, Kaplan A, Lebedev M. "Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option. " Diagnostics., vol. 12, no. 11, 2022 Oct 27. [DOI:10.3390/diagnostics12112607]
13. [ ]. Zhang Z, Constandinou TG., "Firing-rate-modulated spike detection and neural decoding co-design." Journal of Neural Engineering, vol. 20, no. 3, 2023. [DOI:10.1088/1741-2552/accece]
14. [ ]. Kim KH, Kim SJ., "Neural spike sorting under nearly 0-db signalto- noise ratio using nonlinear energy operator and artificial neural-network classifier." IEEE Transactions on Biomedical Engineering, vol. 47, no. 10, pp. 1406-1411, 2000. [DOI:10.1109/10.871415]
15. [ ]. Okreghe CO, Zamani M, Demosthenous A., "A Deep Neural Network-Based Spike Sorting with Improved Channel Selection and Artefact Removal," IEEE Access, vol. 11, pp. 15131-15143, doi: 10.1109/ACCESS.2023.3242643, 2023 [DOI:10.1109/ACCESS.2023.3242643]
16. [ ]. Kalantari F, Hosseini-Nejad H, Sodagar AM., "Hardware-Efficient, On-the-Fly, On-Implant Spike Sorter Dedicated to Brain-Implantable Microsystems," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 8, pp. 1098-1106, doi: 10.1109/TVLSI.2022.3170596, Aug. 2022 [DOI:10.1109/TVLSI.2022.3170596]
17. [ ]. Soleymankhani A, Shalchyan V. , "A new spike sorting algorithm based on continuous wavelet transform and investigating its effect on improving neural decoding accuracy." Neuroscience, vol. 468, pp. 139-48, 2021Aug 1. [DOI:10.1016/j.neuroscience.2021.05.036]
18. [ ]. Sukiban J, Voges N, Dembek TA, Pauli R, Visser-Vandewalle V, Denker M, Weber I, Timmermann L, Grün S., "Evaluation of spike sorting algorithms: application to human subthalamic nucleus recordings and simulations." Neuroscience., vol. 414, pp. 168-85, 2019 Aug 21. [DOI:10.1016/j.neuroscience.2019.07.005]
19. [ ]. Dong Y, Hu D, Wang S, He J., "Decoder calibration framework for intracortical brain-computer interface system via domain adaptation." Biomedical Signal Processing and Control., vol. 81, 2023. [DOI:10.1016/j.bspc.2022.104453]
20. [ ]. Katoozian D, Hosseini-Nejad H, Abolghasemi Dehaqani MR, Shoeibi A, Manuel Gorriz J., "A hardware efficient intra-cortical neural decoding approach based on spike train temporal information." Integrated Computer-Aided Engineering, (Preprint):1-5, 2022. [DOI:10.3233/ICA-220687]
21. [ ]. Chen Y, Yao E, Basu A., "A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces." IEEE Transactions on biomedical circuits and Systems, vol. 10, no. 3, pp. 679-692, 2015. [DOI:10.1109/TBCAS.2015.2483618]
22. [ ]. Dayan P, Abbott LF. "Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems." MIT press; 2005 Aug 12.
23. [ ]. Rieke F, Warland D, Van Steveninck RD, Bialek W. "Spikes: Exploring the Neural Code." MIT press; 1999 Jul 26.
24. [ ]. Pan H, Mi W, Lei X, Zhong W. "A closed-loop BMI system design based on the improved SJIT model and the network of Izhikevich neurons." Neurocomputing, vol. 401, pp. 271-280. 2020. [DOI:10.1016/j.neucom.2020.03.047]
25. [ ]. Ahmadi N, Constandinou TG, Bouganis CS., "Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning." Journal of Neural Engineering, vol. 18, no. 2, 2021. [DOI:10.1088/1741-2552/abde8a]
26. [ ]. Wu H, Feng J, Zeng Y. "Neural Decoding for Macaque's Finger Position: Convolutional Space Model." IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 3, pp. 543-551, 2019. [DOI:10.1109/TNSRE.2019.2893406]
27. [ ]. Pan H, Mi W, Lei X, Deng J. "A closed-loop brain-machine interface framework design for motor rehabilitation." Biomedical Signal Processing and Control, vol. 58, 2020. [DOI:10.1016/j.bspc.2020.101877]
28. [ ]. Dehaqani MR, Vahabie AH, Parsa M, Noudoost B, Soltani A., "Selective Changes in Noise Correlations Contribute to an Enhanced Representation of Saccadic Targets in Prefrontal Neuronal Ensembles." Cereb Cortex, vol. 28, no. 8, pp. 3046-3063, 2018. [DOI:10.1093/cercor/bhy141]
29. [ ]. Li C, Zhang Y, Wang T, Xu X, Wang Q, Xu B, Cui H., "Generative Decoding of Intracortical Neuronal Signals for Online Control of Robotic Arm to Intercept Moving Objects," Journal of Physics: Conference Series, vol. 576, no. 1. IOP Publishing, 2020. [DOI:10.1088/1742-6596/1576/1/012057]
30. [ ]. Li C, Wang T, Zhang Y, Xu X, Wang Q, Zheng R, Cui H., "Serial Decoding of Macaque Intracortical Activity for Feedforward Control of Coherent Sequential Reach." 2021 10th International IEEE/EMBS Conference on Neural Engineering, pp. 49-52, 2021. [DOI:10.1109/NER49283.2021.9441209]
31. [ ]. Baggenstoss PM. " On the Duality Between Belief Networks and Feed-Forward Neural Networks." IEEE Transactions on Neural Networks and learning systems, vol. 30, no. 31, pp. 190-200, 2019. [DOI:10.1109/TNNLS.2018.2836662]
32. [ ]. Taeckens E, Dong R, Shah S., "A Biologically Plausible Spiking Neural Network for Decoding Kinematics in the Hippocampus and Premotor Cortex." 2023 11th International IEEE/EMBS Conference on Neural Engineering, pp. 1-4, 2023. [DOI:10.1109/NER52421.2023.10123745]
33. [ ]. Zhang P, Chao L, Chen Y, Ma X, Wang W, He J, Huang J, Li Q., "Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain-Machine Interface." Sensors, vol. 20, no. 19, 2020. [DOI:10.3390/s20195528]
34. [ ]. Sarić R, Jokić D, Beganović N, Pokvić LG, Badnjević A. "FPGA-based real-time epileptic seizure classification using Artificial Neural Network." Biomedical Signal Processing and Control, vol. 62, 2020. [DOI:10.1016/j.bspc.2020.102106]
35. [ ]. Bair W, Koch C. "Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey." Neural computation, vol. 8, no. 6, pp. 1185-1202, 1996. [DOI:10.1162/neco.1996.8.6.1185]
36. [ ]. Buracas GT, Zador AM, DeWeese MR, Albright TD. "Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex." Neuron, vol. 20, no. 5, pp. 959-969, 1998. [DOI:10.1016/S0896-6273(00)80477-8]
37. [ ]. Salinas E, Sejnowski TJ. "Correlated neuronal activity and the flow of neural information.", Nature reviews neuroscience, vol. 2, no. 8, pp. 539-550, 2001. [DOI:10.1038/35086012]
38. [ ]. Chew G, Ang KK, So RQ, Xu Z, Guan C., "Combining Firing Rate and Spike-Train Synchrony Features in the Decoding of Motor Cortical Activity." 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1091-1094, 2015. [DOI:10.1109/EMBC.2015.7318555]
39. [ ].Ran X, Zhang S, Sun G, Zhu J, Chen W, Pan G. "Decoding Velocity from Spikes Using a New Architecture of Recurrent Neural Network." 2019 9th International IEEE/EMBS Conference on Neural Engineering, pp. 231-234, 2019. [DOI:10.1109/NER.2019.8716895]
40. [ ]. Glaser JI, Benjamin AS, Chowdhury RH, Perich MG, Miller LE, Kording KP., "Machine learning for neural decoding." Eneuro, vol. 7, no. 4, 2020. [DOI:10.1523/ENEURO.0506-19.2020]
41. [ ]. Heelan C, Nurmikko AV, Truccolo W., "FPGA implementation of deep-learning recurrent neural networks with sub-millisecond real-time latency for BCI-decoding of large-scale neural sensors (104 nodes)." 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1070-1073, 2018. [DOI:10.1109/EMBC.2018.8512415]
42. [ ]. Stevenson IH, Kording KP. "How advances in neural recording affect data analysis." Nature neuroscience, vol. 14, no. 2, pp. 139-142, 2011. [DOI:10.1038/nn.2731]
43. [ ]. Ahmadi-Dastgerdi N, Hosseini-Nejad H, Amiri H, Shoeibi A, Gorriz JM. "A vector quantization-based spike compression approach dedicated to multichannel neural recording microsystems." International Journal of Neural Systems, vol. 32, no. 03, 2022. [DOI:10.1142/S0129065722500010]
44. [ ]. Thomas A, Dasgupta S, Rosing T. "A theoretical perspective on hyperdimensional computing." Journal of Artificial Intelligence Research, vol. 72, pp. 215-249, 2021. [DOI:10.1613/jair.1.12664]
45. [ ]. Karunaratne G, Le Gallo M, Cherubini G, Benini L, Rahimi A, Sebastian A. "In-memory hyperdimensional computing." Nature Electronics, vol. 3, no. 6, pp. 327-337, 2020. [DOI:10.1038/s41928-020-0410-3]
46. [ ]. Ge L, Parhi KK. "Classification using hyperdimensional computing: A review." IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp. 30-47, 2020. [DOI:10.1109/MCAS.2020.2988388]
47. [ ] . Buccino AP, Garcia S, Yger P. "Spike sorting: new trends and challenges of the era of high-density probes." Progress in Biomedical Engineering, vol. 4, no. 2, 2022. [DOI:10.1088/2516-1091/ac6b96]
48. [ ]. Burrello A, Cavigelli L, Schindler K, Benini L, Rahimi A., "Laelaps: An Energy-Efficient Seizure Detection Algorithm from Long-term Human iEEG Recordings without False Alarms," 2019 Design, Automation & Test in Europe Conference & Exhibition, pp. 752-757, 2019. [DOI:10.23919/DATE.2019.8715186]
49. [ ]. Du Y, Sun HQ, Tian Q, Zhang SY, Wang C., "Design of blender IMC control system based on simple recurrent networks," 2009 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 1048-1052, 2009. [DOI:10.1109/ICMLC.2009.5212450]
50. [ ]. Heck J, Salem FM., "Simplified minimal gated unit variations for recurrent neural networks," IEEE 60th International Midwest Symposium on Circuits and Systems, 2017. [DOI:10.1109/MWSCAS.2017.8053242]
51. [ ]. Zviagintsev A, Perelman Y, Ginosar R., "Low-power architectures for spike sorting," 2nd International IEEE EMBS Conference on Neural Engineering, pp. 162-165, 2005. [DOI:10.1109/CNE.2005.1419579]
52. [ ]. Zhou F, Liu J, Yu Y, Tian X, Liu H, Hao Y, Zhang S, Chen W, Dai J, Zheng X., "Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats," Journal of Neuroscience Methods, vol. 185, no. 2, pp. 299-306, 2010. [DOI:10.1016/j.jneumeth.2009.10.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb