Volume 12, Issue 3 (Journal of Control, V.12, N.3 Fall 2018)                   JoC 2018, 12(3): 43-61 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani Pedram M, Mohtashamifar M, Afifi A. An Optimal Design and Fabrication of Microfluidic Material Detection Sensor and Limit Cycle Based Readout System. JoC. 2018; 12 (3) :43-61
URL: http://joc.kntu.ac.ir/article-1-366-en.html
1- KNTU
2- MUT
Abstract:   (1000 Views)

In this Study, according to microfluidic structure and bio inspired techniques, a material detection sensor has been designed and fabricated based on micro fabrication method. The capacitive sensing has been designed numerically and optimized by a familiar multi physics software. In this type of sensor, a defined aptamer has been coated on the capacitor electrode surface and by flowing the fluid through the microchannel, the targeted material would be involved between the aptamer string structure and it makes a change in capacitor value. In this research, a novel readout system based on limit cycle has been introduced and implemented. In this method, a virtual nonlinear dynamic has been supposed beside the real system and makes the whole system behave in a limit cycle (LC). By measuring LC frequency and amplitude, capacitor value is estimated.

Full-Text [PDF 2364 kb]   (456 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2016/04/24 | Revised: 2019/04/24 | Accepted: 2018/01/10 | Published: 2019/04/28

References
1. 1] Weigl, B.H. and P. Yager, Tech. Sight. Science, 1999. 283(5400): p. 346-347. [DOI:10.1126/science.283.5400.346]
2. [2] van den Berg, A. and T. Lammerink, Micro total analysis systems: microfluidic aspects, integration concept and applications, in Microsystem technology in chemistry and life science. 1998, Springer. p. 21-49. [DOI:10.1007/3-540-69544-3_2]
3. [3] Nie, Z., et al., Electrochemical sensing in paper-based microfluidic devices. Lab on a Chip, 2010. 10(4): p. 477-483. [DOI:10.1039/B917150A]
4. [4] Cheng, S. and Z. Wu, A Microfluidic, Reversibly Stretchable, Large‐Area Wireless Strain Sensor. Advanced Functional Materials, 2011. 21(12): p. 2282-2290. [DOI:10.1002/adfm.201002508]
5. [5] Huang, C.-J., et al., Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sensors and Actuators B: Chemical, 2007. 122(2): p. 461-468. [DOI:10.1016/j.snb.2006.06.015]
6. [6] Saadi, W., et al., A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomedical microdevices, 2006. 8(2): p. 109-118. [DOI:10.1007/s10544-006-7706-6]
7. [7] Chen, J., J. Li, and Y. Sun, Microfluidic approaches for cancer cell detection, characterization, and separation. Lab on a Chip, 2012. 12(10): p. 1753-1767. [DOI:10.1039/c2lc21273k]
8. [8] Maheswaran, S., et al., Detection of mutations in EGFR in circulating lung-cancer cells. New England Journal of Medicine, 2008. 359(4): p. 366-377. [DOI:10.1056/NEJMoa0800668]
9. [9] Yung, T.K., et al., Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clinical Cancer Research, 2009. 15(6): p. 2076-2084. [DOI:10.1158/1078-0432.CCR-08-2622]
10. [10] Fujii, T., PDMS-based microfluidic devices for biomedical applications. Microelectronic Engineering, 2002. 61: p. 907-914. [DOI:10.1016/S0167-9317(02)00494-X]
11. [11] Thundat, T., et al., Vapor detection using resonating microcantilevers. Analytical Chemistry, 1995. 67(3): p. 519-521. [DOI:10.1021/ac00099a006]
12. [12] Fair, R.B., V.K. Pamula, and M. Pollack. MEMS-based explosive particle detection and remote particle stimulation. in AeroSense'97. 1997. International Society for Optics and Photonics. [DOI:10.1117/12.280896]
13. [13] Pamula, V.K. and R.B. Fair. Detection of dissolved TNT and DNT in soil with a MEMS explosive particle detector. in AeroSense 2000. 2000. International Society for Optics and Photonics. [DOI:10.1117/12.396283]
14. [14] Rajic, S., et al. Ultraresponsive thermal sensors for the detection of explosives using calorimetric spectroscopy (CalSpec). in AeroSense'99. 1999. International Society for Optics and Photonics. [DOI:10.1117/12.357058]
15. [15] Pamula, V.K. and R.B. Fair. Detection of nanogram explosive particles with a MEMS sensor. in AeroSense'99. 1999. International Society for Optics and Photonics. [DOI:10.1117/12.357055]
16. [16] Pinnaduwage, L., et al., Explosives: A microsensor for trinitrotoluene vapour. Nature, 2003. 425(6957): p. 474-474. [DOI:10.1038/425474a]
17. [17] Pinnaduwage, L., et al., A sensitive, handheld vapor sensor based on microcantilevers. Review of Scientific Instruments, 2004. 75(11): p. 4554-4557. [DOI:10.1063/1.1804998]
18. [18] Li, X., et al. Four-cantilever trace explosive sensors with dual SAMS functionalized for specific-sensing improvement and nonspecific-adsorption depression. in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International. 2007. IEEE. [DOI:10.1109/SENSOR.2007.4300301]
19. [19] Miller, R.A., et al., A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection. Sensors and Actuators A: Physical, 2001. 91(3): p. 301-312. [DOI:10.1016/S0924-4247(01)00600-8]
20. [20] Senesac, L.R., et al., Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Review of Scientific Instruments, 2009. 80(3): p. 035102. [DOI:10.1063/1.3090881]
21. [21] Jenison, R.D., et al., High-resolution molecular discrimination by RNA. Science, 1994. 263(5152): p. 1425-1429. [DOI:10.1126/science.7510417]
22. [22] Stoltenburg, R., C. Reinemann, and B. Strehlitz, SELEX-a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular engineering, 2007. 24(4): p. 381-403. [DOI:10.1016/j.bioeng.2007.06.001]
23. [23] Lee, H., et al., Various on-chip sensors with microfluidics for biological applications. Sensors, 2014. 14(9): p. 17008-17036. [DOI:10.3390/s140917008]
24. [24] Gao, Y., et al., Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection. Lab on a Chip, 2013. 13(24): p. 4755-4764. [DOI:10.1039/c3lc50863c]
25. [25] Anker, J.N., et al., Biosensing with plasmonic nanosensors. Nature materials, 2008. 7(6): p. 442-453. [DOI:10.1038/nmat2162]
26. [26] Lee, S.H., et al., Linewidth‐Optimized Extraordinary Optical Transmission in Water with Template‐Stripped Metallic Nanohole Arrays. Advanced Functional Materials, 2012. 22(21): p. 4439-4446. [DOI:10.1002/adfm.201200955]
27. [27] Lim, C., et al., Optofluidic platforms based on surface-enhanced Raman scattering. Analyst, 2010. 135(5): p. 837-844. [DOI:10.1039/b919584j]
28. [28] Park, T., et al., Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab on a Chip, 2005. 5(4): p. 437-442. [DOI:10.1039/b414457k]
29. [29] Strehle, K.R., et al., A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Analytical Chemistry, 2007. 79(4): p. 1542-1547. [DOI:10.1021/ac0615246]
30. [30] Arpali, S.A., et al., High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab on a Chip, 2012. 12(23): p. 4968-4971. [DOI:10.1039/c2lc40894e]
31. [31] Matos Pires, N.M. and T. Dong, Microfluidic biosensor array with integrated poly (2, 7-carbazole)/fullerene-based photodiodes for rapid multiplexed detection of pathogens. Sensors, 2013. 13(12): p. 15898-15911. [DOI:10.3390/s131215898]
32. [32] Wang, J., et al., A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence. Sensors, 2013. 13(12): p. 16075-16089. [DOI:10.3390/s131216075]
33. [33] Chiu, T.-K., et al., Development of a microfluidic-based optical sensing device for label-free detection of circulating tumor cells (CTCs) through their lactic acid metabolism. Sensors, 2015. 15(3): p. 6789-6806. [DOI:10.3390/s150306789]
34. [34] Zhang, F., et al., A microfluidic love-wave biosensing device for PSA detection based on an aptamer beacon probe. Sensors, 2015. 15(6): p. 13839-13850. [DOI:10.3390/s150613839]
35. [35] Lum, J., et al., An impedance aptasensor with microfluidic chips for specific detection of H5N1 avian influenza virus. Sensors, 2015. 15(8): p. 18565-18578. [DOI:10.3390/s150818565]
36. [36] Weng, X., G. Gaur, and S. Neethirajan, Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor. Biosensors, 2016. 6(2): p. 24. [DOI:10.3390/bios6020024]
37. [37] Miao, B., et al., Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection. Sensors, 2015. 15(11): p. 27954-27968. [DOI:10.3390/s151127954]
38. [38] Khalil, H.K. and J. Grizzle, Nonlinear systems. Vol. 3. 1996: Prentice hall New Jersey.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2019 All Rights Reserved | Journal of Control

Designed & Developed by : Yektaweb