Volume 16, Issue 3 (Journal of Control, V.16, N.3 Fall 2022)                   JoC 2022, 16(3): 1-9 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Darabi Moghadam M, Vali A, Hakimi S M, Behnamgol V, Derakhshan G. Design and Implementation of Discrete Time Observer Based Backstepping Controller for a 2DOF Servomechanism. JoC 2022; 16 (3) :1-9
URL: http://joc.kntu.ac.ir/article-1-921-en.html
1- Islamic Azad University, Damavand Branch
2- Malek Ashtar University of Technology
Abstract:   (593 Views)
The two degrees of freedom servomechanism has many applications, including in gimbaled seekers. These mechanisms require closed-loop control to perform properly. In this paper, an observer-based multi-input-multi-output hybrid controller is designed for a two-degree-of-freedom servomechanism. Since in the model presented in this paper, disturbances on the mechanism are considered, so an extended state observer to estimate disturbance term to improve the controller performance. Also, due to the nonlinearity and two input- two output dynamics of these mechanisms, the use of combined nonlinear multivariate control methods to control the angle in these mechanisms will increase efficiency. For this purpose, nonlinear auxiliary control inputs are first determined in the first step. Then, in the second step, the nonlinear control input vector is determined using the multi-input-multi-output linear feedback method. In this step, a discrete time observer is used to estimate the uncertainty. The simulation results show that the proposed observer accurately estimates the disturbance and provides it to the controller. The controller designed using this information is able to control the output angles. Also, the results of the controller implementation designed in the processor in the loop test are presented.
Full-Text [PDF 1169 kb]   (38 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2022/02/16 | Accepted: 2022/07/6 | ePublished ahead of print: 2022/09/19 | Published: 2022/12/1

1. [1] G. M. Siouris, Missile Guidance and Control Systems, Springer-Verlog Publisher, 2004. [DOI:10.1115/1.1849174]
2. محمدرضا عاروان، مدل¬سازی جستجوگر الکترواپیکی و تخمین نرخ چرخش خط دید در حضور اغتشاش، رساله دکتری، دانشگاه صنعتی خواجه نصیرالدین طوسی، 1386.
3. [3] C. F. Lin, Modern Navigation Guidance and Control Processing, Prentice-Hall, 1991.
4. مهدی گلی، مدل¬سازی، شبیه¬سازی و تحلیل خطای عملکرد جستجوگر یک پرنده، پایان¬نامه کارشناسی ارشد، دانشگاه صنعتی خواجه نصیرالدین طوسی، 1391.
5. [5] B. Ekstrand, Equations of Motion for a Two-Axes Gimbal System, IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 3, 2001. [DOI:10.1109/7.953259]
6. [6] H. S. Paul, Gyroscopes: theory and design, MCGRAW-HILL, Newyork, 1961.
7. [7] C. Jekeli, Inertial Navigation Systems with geodetic Applications, Walter de Gruyter, Berlin 2001. [DOI:10.1515/9783110800234]
8. [8] Y. Marwa, C. B. Njima, and T. Garna, Decentralized nonlinear robust control for multivariable systems: Application to a 2 DoF laboratory helicopter, Acta Polytechnica Hungarica, Vol. 17, No. 5, pp. 27-48, 2020.‏ [DOI:10.12700/APH.17.5.2020.5.2]
9. [9] L. Ping, and G. Zhu, Robust internal model control of servo motor based on sliding mode control approach, ISA transactions, Vol. 93, pp. 199-208, 2019.‏ [DOI:10.1016/j.isatra.2019.03.021]
10. [10] S. Emre, R. Oboe, and K. Ohnishi, Disturbance observer-based robust control and its applications: 35th anniversary overview, IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, pp. 2042-2053, 2019.‏ [DOI:10.1109/TIE.2019.2903752]
11. محمدعلی معصوم نیا، ژیروسکوپ¬های یک درجه آزادی، گزارش شماره H-66-12-1-M ، دانشگاه صنعتی شریف، اسفند 1366.
12. [12] L. Wang, L. Xuelian, and W. Chunyang, Improved disturbance observer-based control for airborne photoelectric stabilized platform, Optik, Vol. 188, 2019.‏ [DOI:10.1016/j.ijleo.2019.05.041]
13. [13] J. Chenghu, et al. Adaptive extended state observer-based flatness nonlinear output control for torque tracking of electrohydraulic loading system, Transactions of the Institute of Measurement and Control, Vol. 40, No. 10, pp. 2999-3009, 2018.‏ [DOI:10.1177/0142331217713835]
14. [14] C. W. Mckerley, A Model for a Two Degree of Freedom Coupled Seeker with Mass Imbalance, Southeastcon '96, Bringing Together Education, Science and Technology, Proc. of the IEEE, 1996.
15. [15] B. J. Smith, et al. Sliding mode control in a two-axis gimbal system, IEEE aerospace conference, 1999.‏ [DOI:10.1109/AERO.1999.790222]
16. [16] O. Hasturk, A. M. Erkmen, and İ. Erkmen, Proxy-based sliding mode stabilization of a two-axis gimbaled platform, target, Vol. 3, No. 4, pp. 1-7, 2011.‏
17. [17] Z. Zhao, and Y. Xiaoyang, Backstepping designed sliding mode control for a two-axis tracking system, 2010 5th IEEE Conference on Industrial Electronics and Applications, 2010.‏ [DOI:10.1109/ICIEA.2010.5514728]
18. ‏[18] Z. Gejic, Introduction to linear and nonlinear observers, Rutgers University, 2003.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb