Volume 16, Issue 4 (Journal of Control, V.16, N.4 Winter 2023)                   JoC 2023, 16(4): 75-84 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nouri Manzar M. Disturbance supervisory switch control design by using Unfalsified control concepts. JoC 2023; 16 (4) :75-84
URL: http://joc.kntu.ac.ir/article-1-961-en.html
Shahid Beheshti University
Abstract:   (1616 Views)
Unfalsified adaptive control strategy is a data-driven approach in robust adaptive control that selects the stabilizing controller from an the available control bank based on the input-output system’s data. Selection is done without activating the controllers by using the virtual reference signal and a cost function. Stability of the closed loop system is guaranteed. In this paper, inspired by the unfalsified control approach, the goal is to select a controller from the available pre-designed controller bank that has the highest level of disturbance attenuation. The selection is based on the system’s data by using a cost function without disturbance measurement. By introducing a new concept called virtual disturbance, the performance of controllers is evaluated without activation. The convergence of the algorithm and the disturbance attenuation level of the proposed method have been proven in a theorem. Simulation results show performance of the proposed method on a wind turbine for various wind speed disturbances.
Full-Text [PDF 966 kb]   (624 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2022/11/28 | Accepted: 2023/02/20 | Published: 2023/03/1

References
1. I. Petersen, "Disturbance attenuation and H∞ optimization: A design method based on the algebraic Riccati equation," IEEE Transactions on Automatic Control, vol. 32, no. 5, pp. 427-429, 1987. [DOI:10.1109/TAC.1987.1104609]
2. [ ] W. H. Chen, "Disturbance observer based control for nonlinear systems," IEEE/ASME transactions on mechatronics, vol. 9, no. 4, pp. 706-710, 2004. [DOI:10.1109/TMECH.2004.839034]
3. [ ] L. Guo and W.-H. Chen, "Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach," International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 15, no. 3, pp. 109-125, 2005. [DOI:10.1002/rnc.978]
4. [ ] Z. J. Yang, H. Tsubakihara, S. Kanae, K. Wada, and C.-Y. Su, "A novel robust nonlinear motion controller with disturbance observer," IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 137-147, 2007. [DOI:10.1109/TCST.2007.903091]
5. [ ] X. Wei and L. Guo, "Composite disturbance-observer-based control and H∞ control for complex continuous models," International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 20, no. 1, pp. 106-118, 2010. [DOI:10.1002/rnc.1425]
6. [ ] X. Wei and L. Guo, "Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances," International Journal of Control, vol. 82, no. 6, pp. 1082-1098, 2009. [DOI:10.1080/00207170802455339]
7. [ ] L. Guo and X. Y. Wen, "Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems," Transactions of the Institute of Measurement and Control, vol. 33, no. 8, pp. 942-956, 2011. [DOI:10.1177/0142331210361555]
8. [ ] D. Lee, "Nonlinear disturbance observer-based robust control for spacecraft formation flying," Aerospace Science and Technology, vol. 76, pp. 82-90, 2018. [DOI:10.1016/j.ast.2018.01.027]
9. [ ] J. Han, "From PID to active disturbance rejection control," IEEE transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, 2009. [DOI:10.1109/TIE.2008.2011621]
10. [ ] L. Sun, W. Xue, D. Li, H. Zhu, and Z. Su, "Quantitative tuning of active disturbance rejection controller for foptd model with application to power plant control," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 805-815, 2021. [DOI:10.1109/TIE.2021.3050372]
11. [ ] Z. Hao et al., "Linear/nonlinear active disturbance rejection switching control for permanent magnet synchronous motors," IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9334-9347, 2021. [DOI:10.1109/TPEL.2021.3055143]
12. [ ] K. Lakomy, W. Giernacki, J. Michalski, and R. Madonski, "Active Disturbance Rejection Control (ADRC) Toolbox for MATLAB/Simulink," arXiv preprint arXiv:2112.01614, 2021.
13. [ ] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, "Disturbance attenuation properties of time-controlled switched systems," Journal of the franklin institute, vol. 338, no. 7, pp. 765-779, 2001. [DOI:10.1016/S0016-0032(01)00030-8]
14. [ ] H. Lin and P. J. Antsaklis, "Stability and persistent disturbance attenuation properties for a class of networked control systems: switched system approach," International Journal of Control, vol. 78, no. 18, pp. 1447-1458, 2005. [DOI:10.1080/00207170500329182]
15. [ ] J. L. Chang, "Dynamic output integral sliding-mode control with disturbance attenuation," IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2653-2658, 2009. [DOI:10.1109/TAC.2009.2031569]
16. [ ] X. Yao, J. H. Park, L. Wu, and L. Guo, "Disturbance-observer-based composite hierarchical antidisturbance control for singular Markovian jump systems," IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2875-2882, 2018. [DOI:10.1109/TAC.2018.2867607]
17. [ ] M. G. Safonov and T. C. Tsao, "The unfalsified control concept and learning," IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 843-847, 1997. [DOI:10.1109/9.587340]
18. [ ] R. Wang, A. Paul, M. Stefanovic, and M. Safonov, "Cost detectability and stability of adaptive control systems," International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, vol. 17, no. 5‐6, pp. 549-561, 2007. [DOI:10.1002/rnc.1122]
19. [ ] S. Baldi, G. Battistelli, E. Mosca, and P. Tesi, "Multi-model unfalsified adaptive switching supervisory control," Automatica, vol. 46, no. 2, pp. 249-259, Feb. 2010. [DOI:10.1016/j.automatica.2009.10.034]
20. [ ] B. Sadeghi Forouz, M. Nouri Manzar, and A. Khaki-Sedigh, "Multiple model unfalsified adaptive generalized predictive control based on the quadratic inverse optimal control concept," Optimal Control Applications and Methods, vol. 42, no. 3, pp. 769-785, 2021. [DOI:10.1002/oca.2700]
21. [ ] K. S. Sajjanshetty and M. G. Safonov, "Multi‐Objective Cost‐Detectability in Unfalsified Adaptive Control," Asian Journal of Control, vol. 18, no. 6, pp. 1959-1968, 2016. [DOI:10.1002/asjc.1331]
22. [ ] G. Battistelli, E. Mosca, M. G. Safonov, and P. Tesi, "Stability of unfalsified adaptive switching control in noisy environments," IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2424-2429, 2010. [DOI:10.1109/TAC.2010.2056473]
23. [ ] G. Battistelli, J. P. Hespanha, E. Mosca, and P. Tesi, "Model-free adaptive switching control of time-varying plants," IEEE Transactions on Automatic Control, vol. 58, no. 5, pp. 1208-1220, 2013. [DOI:10.1109/TAC.2013.2243974]
24. [ ] S. V. Patil, Y. C. Sung, and M. G. Safonov, "Unfalsified Adaptive Control for Nonlinear Time-Varying Plants," IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 3892-3904, 2022. [DOI:10.1109/TAC.2021.3110434]
25. [ ] J. Lee, and F. Zhao, GWEC Global Wind Report 2022. Global Wind Energy Council, 2022. https://gwec.net/global-wind-report-2022/
26. [ ] R. Sitharthan, M. Karthikeyan, D. S. Sundar, and S. Rajasekaran, "Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine," ISA transactions, vol. 96, pp. 479-489, 2020. [DOI:10.1016/j.isatra.2019.05.029]
27. [ ] P. F. Odgaard, J. Stoustrup, and M. Kinnaert, "Fault-tolerant control of wind turbines: A benchmark model," IEEE Transactions on control systems Technology, vol. 21, no. 4, pp. 1168-1182, 2013. [DOI:10.1109/TCST.2013.2259235]
28. [ ] C. Nichita, D. Luca, B. Dakyo, and E. Ceanga, "Large band simulation of the wind speed for real time wind turbine simulators," IEEE Transactions on energy conversion, vol. 17, no. 4, pp. 523-529, 2002. [DOI:10.1109/TEC.2002.805216]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb