1. I. Petersen, "Disturbance attenuation and H∞ optimization: A design method based on the algebraic Riccati equation," IEEE Transactions on Automatic Control, vol. 32, no. 5, pp. 427-429, 1987. [
DOI:10.1109/TAC.1987.1104609]
2. [ ] W. H. Chen, "Disturbance observer based control for nonlinear systems," IEEE/ASME transactions on mechatronics, vol. 9, no. 4, pp. 706-710, 2004. [
DOI:10.1109/TMECH.2004.839034]
3. [ ] L. Guo and W.-H. Chen, "Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach," International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 15, no. 3, pp. 109-125, 2005. [
DOI:10.1002/rnc.978]
4. [ ] Z. J. Yang, H. Tsubakihara, S. Kanae, K. Wada, and C.-Y. Su, "A novel robust nonlinear motion controller with disturbance observer," IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 137-147, 2007. [
DOI:10.1109/TCST.2007.903091]
5. [ ] X. Wei and L. Guo, "Composite disturbance-observer-based control and H∞ control for complex continuous models," International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 20, no. 1, pp. 106-118, 2010. [
DOI:10.1002/rnc.1425]
6. [ ] X. Wei and L. Guo, "Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances," International Journal of Control, vol. 82, no. 6, pp. 1082-1098, 2009. [
DOI:10.1080/00207170802455339]
7. [ ] L. Guo and X. Y. Wen, "Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems," Transactions of the Institute of Measurement and Control, vol. 33, no. 8, pp. 942-956, 2011. [
DOI:10.1177/0142331210361555]
8. [ ] D. Lee, "Nonlinear disturbance observer-based robust control for spacecraft formation flying," Aerospace Science and Technology, vol. 76, pp. 82-90, 2018. [
DOI:10.1016/j.ast.2018.01.027]
9. [ ] J. Han, "From PID to active disturbance rejection control," IEEE transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, 2009. [
DOI:10.1109/TIE.2008.2011621]
10. [ ] L. Sun, W. Xue, D. Li, H. Zhu, and Z. Su, "Quantitative tuning of active disturbance rejection controller for foptd model with application to power plant control," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 805-815, 2021. [
DOI:10.1109/TIE.2021.3050372]
11. [ ] Z. Hao et al., "Linear/nonlinear active disturbance rejection switching control for permanent magnet synchronous motors," IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9334-9347, 2021. [
DOI:10.1109/TPEL.2021.3055143]
12. [ ] K. Lakomy, W. Giernacki, J. Michalski, and R. Madonski, "Active Disturbance Rejection Control (ADRC) Toolbox for MATLAB/Simulink," arXiv preprint arXiv:2112.01614, 2021.
13. [ ] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, "Disturbance attenuation properties of time-controlled switched systems," Journal of the franklin institute, vol. 338, no. 7, pp. 765-779, 2001. [
DOI:10.1016/S0016-0032(01)00030-8]
14. [ ] H. Lin and P. J. Antsaklis, "Stability and persistent disturbance attenuation properties for a class of networked control systems: switched system approach," International Journal of Control, vol. 78, no. 18, pp. 1447-1458, 2005. [
DOI:10.1080/00207170500329182]
15. [ ] J. L. Chang, "Dynamic output integral sliding-mode control with disturbance attenuation," IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2653-2658, 2009. [
DOI:10.1109/TAC.2009.2031569]
16. [ ] X. Yao, J. H. Park, L. Wu, and L. Guo, "Disturbance-observer-based composite hierarchical antidisturbance control for singular Markovian jump systems," IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2875-2882, 2018. [
DOI:10.1109/TAC.2018.2867607]
17. [ ] M. G. Safonov and T. C. Tsao, "The unfalsified control concept and learning," IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 843-847, 1997. [
DOI:10.1109/9.587340]
18. [ ] R. Wang, A. Paul, M. Stefanovic, and M. Safonov, "Cost detectability and stability of adaptive control systems," International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, vol. 17, no. 5‐6, pp. 549-561, 2007. [
DOI:10.1002/rnc.1122]
19. [ ] S. Baldi, G. Battistelli, E. Mosca, and P. Tesi, "Multi-model unfalsified adaptive switching supervisory control," Automatica, vol. 46, no. 2, pp. 249-259, Feb. 2010. [
DOI:10.1016/j.automatica.2009.10.034]
20. [ ] B. Sadeghi Forouz, M. Nouri Manzar, and A. Khaki-Sedigh, "Multiple model unfalsified adaptive generalized predictive control based on the quadratic inverse optimal control concept," Optimal Control Applications and Methods, vol. 42, no. 3, pp. 769-785, 2021. [
DOI:10.1002/oca.2700]
21. [ ] K. S. Sajjanshetty and M. G. Safonov, "Multi‐Objective Cost‐Detectability in Unfalsified Adaptive Control," Asian Journal of Control, vol. 18, no. 6, pp. 1959-1968, 2016. [
DOI:10.1002/asjc.1331]
22. [ ] G. Battistelli, E. Mosca, M. G. Safonov, and P. Tesi, "Stability of unfalsified adaptive switching control in noisy environments," IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2424-2429, 2010. [
DOI:10.1109/TAC.2010.2056473]
23. [ ] G. Battistelli, J. P. Hespanha, E. Mosca, and P. Tesi, "Model-free adaptive switching control of time-varying plants," IEEE Transactions on Automatic Control, vol. 58, no. 5, pp. 1208-1220, 2013. [
DOI:10.1109/TAC.2013.2243974]
24. [ ] S. V. Patil, Y. C. Sung, and M. G. Safonov, "Unfalsified Adaptive Control for Nonlinear Time-Varying Plants," IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 3892-3904, 2022. [
DOI:10.1109/TAC.2021.3110434]
25. [ ] J. Lee, and F. Zhao, GWEC Global Wind Report 2022. Global Wind Energy Council, 2022. https://gwec.net/global-wind-report-2022/
26. [ ] R. Sitharthan, M. Karthikeyan, D. S. Sundar, and S. Rajasekaran, "Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine," ISA transactions, vol. 96, pp. 479-489, 2020. [
DOI:10.1016/j.isatra.2019.05.029]
27. [ ] P. F. Odgaard, J. Stoustrup, and M. Kinnaert, "Fault-tolerant control of wind turbines: A benchmark model," IEEE Transactions on control systems Technology, vol. 21, no. 4, pp. 1168-1182, 2013. [
DOI:10.1109/TCST.2013.2259235]
28. [ ] C. Nichita, D. Luca, B. Dakyo, and E. Ceanga, "Large band simulation of the wind speed for real time wind turbine simulators," IEEE Transactions on energy conversion, vol. 17, no. 4, pp. 523-529, 2002. [
DOI:10.1109/TEC.2002.805216]