Volume 18, Issue 2 (Journal of Control, V.18, N.2 Summer 2024)                   JoC 2024, 18(2): 37-53 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajabi M J, Dehghan S M M, Mohammad-Hosseini S. Using invariant extended Kalman filter to integrate inertial navigation system and global positioning system. JoC 2024; 18 (2) :37-53
URL: http://joc.kntu.ac.ir/article-1-994-en.html
1- Malek-Ashtar University of Technology
Abstract:   (3041 Views)
Using the conventional methods to integrate the inertial navigation system and the global navigation satellite system by the extended Kalman filter depends on a time consuming algorithm to determine relatively accurate initial values. In the presence of large initial error, EKF will diverge or converge slowly due to the dependence of the Jacobians on the state variables values. The invariant extended Kalman filter has the ability to solve this problem by changing the error definition method and using the theory of invariance, in which the convergence does not depend on the error of the initial values. In this paper, in order to remove the initial alignment phase, the IEKF is used to integrate the inertial navigation system and the global positioning system. Considering the navigation variables as elements of a Lie group, the error dynamics can be presented in such a way that the Jacobians are independent of the state variables. The comparison of the integration results using the invariant extended Kalman filter, the standard extended Kalman filter and the error state extended Kalman filter with experimental data set in different initial errors shows the significent performance of the invariant Kalman filter than the other filters and its ability to resolve the divergence or slow convergence problem of the conventional methods. The results show, the dependence of the integration method on the time consuming initial alignment can be removed using this filter.
Full-Text [PDF 2713 kb]   (229 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2023/07/18 | Accepted: 2024/02/2 | ePublished ahead of print: 2024/04/13 | Published: 2024/09/20

References
1. [1] D. H. Titterton and J. L. Weston, Strapdown inertial navigation technology. Institution of Engineering and Technology, 2004. [DOI:10.1049/PBRA017E]
2. [2] A. Noureldin, T. B. Karamat, and J. Georgy, Fundamentals of inertial navigation, satellite-based positioning and their integration. Springer Science & Business Media, 2013. [DOI:10.1007/978-3-642-30466-8]
3. [3] M. S. Grewal, A. P. Andrews, and C. G. Bartone, Global navigation satellite systems, inertial navigation, and integration. John Wiley & Sons, 2020. [DOI:10.1002/9781119547860]
4. [4] P. G. Savage, Strapdown analytics. Strapdown Associates, 2000.
5. [5] R. M. Rogers, Applied mathematics in integrated navigation systems. American Institute of Aeronautics and Astronautics, 2007.
6. [6] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. The MIT Press, 2005.
7. [7] A. J. Krener, "The convergence of the extended Kalman filter," in Directions in mathematical systems theory and optimization: Springer, 2003, pp. 173-182. [DOI:10.1007/3-540-36106-5_12]
8. [8] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. John Wiley and Sons, 2006. [DOI:10.1002/0470045345]
9. [9] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, "Observability-based rules for designing consistent EKF SLAM estimators," The International Journal of Robotics Research, vol. 29, no. 5, pp. 502-528, 2010. [DOI:10.1177/0278364909353640]
10. [10] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, "A quadratic-complexity observability-constrained unscented Kalman filter for SLAM," IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1226-1243, 2013. [DOI:10.1109/TRO.2013.2267991]
11. [11] M. Raitoharju and R. Piché, "On computational complexity reduction methods for Kalman filter extensions," IEEE Aerospace and Electronic Systems Magazine, vol. 34, no. 10, pp. 2-19, 2019. [DOI:10.1109/MAES.2019.2927898]
12. [12] A. Barrau and S. Bonnabel, "An EKF-SLAM algorithm with consistency properties," arXiv:1510.06263, 2015.
13. [13] A. Barrau and S. Bonnabel, "The invariant extended Kalman filter as a stable observer," IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1797-1812, 2016. [DOI:10.1109/TAC.2016.2594085]
14. [14] P. Rouchon and J. Rudolph, "Invariant tracking and stabilization: problem formulation and examples," in Stability and Stabilization of Nonlinear Systems, vol. 246: Springer, 2000, pp. 261-273. [DOI:10.1007/1-84628-577-1_14]
15. [15] N. Aghannan and P. Rouchon, "On invariant asymptotic observers," in Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 2, pp. 1479-1484: IEEE. [DOI:10.1109/CDC.2002.1184728]
16. [16] S. Bonnabel, P. Martin, and P. Rouchon, "Symmetry-preserving observers," IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2514-2526, 2008. [DOI:10.1109/TAC.2008.2006929]
17. [17] S. Bonnabel, P. Martin, and P. Rouchon, "Non-linear symmetry-preserving observers on Lie groups," IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1709-1713, 2009. [DOI:10.1109/TAC.2009.2020646]
18. [18] S. Bonnable, P. Martin, and E. Salaün, "Invariant extended Kalman filter: theory and application to a velocity-aided attitude estimation problem," in Proceedings of the 48h IEEE Conference on Decision and Control, 2009, pp. 1297-1304: IEEE. [DOI:10.1109/CDC.2009.5400372]
19. [19] P. Martin and E. Salaün, "Generalized Multiplicative Extended Kalman Filter for Aided Attitude and Heading Reference System," in AIAA Guidance, Navigation, and Control Conference, 2010. [DOI:10.2514/6.2010-8300]
20. [20] S. Bonnabel, "Left-invariant extended Kalman filter and attitude estimation," in 2007 46th IEEE Conference on Decision and Control, 2007, pp. 1027-1032: IEEE. [DOI:10.1109/CDC.2007.4434662]
21. [21] Y. Luo, M. Wang, C. Guo, and W. Guo, "Research on Invariant Extended Kalman Filter Based 5G/SINS Integrated Navigation Simulation," in China Satellite Navigation Conference, 2021, pp. 455-466: Springer. [DOI:10.1007/978-981-16-3142-9_43]
22. [22] Z. Zhang, J. Zhao, C. Huang, and L. Li, "Precise and robust sideslip angle estimation based on INS/GNSS integration using invariant extended Kalman filter," Proceedings of the Institution of Mechanical Engineers, 2022. [DOI:10.1177/09544070221102662]
23. [23] E. R. Potokar, K. Norman, and J. G. Mangelson, "Invariant extended kalman filtering for underwater navigation," IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5792-5799, 2021. [DOI:10.1109/LRA.2021.3085167]
24. [24] A. Ibrahim, A. Abosekeen, A. Azouz, and A. Noureldin, "Enhanced Autonomous Vehicle Positioning Using a Loosely Coupled INS/GNSS-Based Invariant-EKF Integration," Sensors, vol. 23, no. 13, p. 6097, 2023. [DOI:10.3390/s23136097]
25. [25] X. Zhou, Y. Chen, Y. Liu, and J. Hu, "A Novel Sensor Fusion Method Based on Invariant Extended Kalman Filter for Unmanned Aerial Vehicle," in 2021 IEEE International Conference on Robotics and Biomimetics, 2021, pp. 1111-1116: IEEE. [DOI:10.1109/ROBIO54168.2021.9739235]
26. [26] L. Chang, F. Qin, and J. Xu, "Strapdown inertial navigation system initial alignment based on group of double direct spatial isometries," IEEE Sensors Journal, vol. 22, no. 1, pp. 803-818, 2021. [DOI:10.1109/JSEN.2021.3108497]
27. [27] J. E. Humphreys, Introduction to Lie algebras and representation theory. Springer Science & Business Media, 2012.
28. [28] W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry. Academic press, 2003.
29. [29] G. S. Chirikjian, Stochastic models, information theory, and Lie groups, volume 2: Analytic methods and modern applications. Springer Science & Business Media, 2009.
30. [30] S. C. Hsiung, "Toward Invariant Visual-Inertial State Estimation using Information Sparsification," Master's thesis, Carnegie Mellon University, 2018.
31. [31] Y. Luo, C. Guo, S. You, J. Hu, and J. Liu, "SE2(3) based Extended Kalman Filtering and Smoothing Framework for Inertial-Integrated Navigation," arXiv preprint arXiv:2102.12897, 2021. [DOI:10.1186/s43020-021-00061-z]
32. [32] M. S. Andrle and J. L. Crassidis, "Attitude estimation employing common frame error representations," Journal of Guidance, Control, and Dynamics, vol. 38, no. 9, pp. 1614-1624, 2015. [DOI:10.2514/1.G001025]
33. [33] A. Barrau, "Non-linear state error based extended Kalman filters with applications to navigation," Doctoral thesis, Mines Paristech, 2015.
34. [34] A. Barrau and S. Bonnabel, "The geometry of navigation problems," IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 689-704, 2022. [DOI:10.1109/TAC.2022.3144328]
35. [35] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, "Contact-aided invariant extended Kalman filtering for robot state estimation," The International Journal of Robotics Research, vol. 39, no. 4, pp. 402-430, 2020. [DOI:10.1177/0278364919894385]
36. [36] L. Chang and Y. Luo, "Log-linear Error State Model Derivation without Approximation for INS," IEEE Transactions on Aerospace and Electronic Systems, 2022. [DOI:10.1109/TAES.2022.3197726]
37. [37] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? the kitti vision benchmark suite," in 2012 IEEE conference on computer vision and pattern recognition, 2012, pp. 3354-3361: IEEE. [DOI:10.1109/CVPR.2012.6248074]
38. [38] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The kitti dataset," The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231-1237, 2013. [DOI:10.1177/0278364913491297]
39. [39] OxTS, "RTv2 GNSS-aided Inertial Measurement Systems User Manual," [Online]. Available: www.oxts.com/app/uploads/2018/02/rtman.pdf, 2018.
40. [40] T. Qin, P. Li, and S. Shen, "Vins-mono: A robust and versatile monocular visual-inertial state estimator," IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, 2018. [DOI:10.1109/TRO.2018.2853729]
41. [41] Y. F. Jiang and Y. P. Lin, "Error estimation of INS ground alignment through observability analysis," IEEE Transactions on Aerospace and Electronic systems, vol. 28, no. 1, pp. 92-97, 1992. [DOI:10.1109/7.135435]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb