Volume 11, Issue 4 (Journal of Control, V.11, N.4 Winter 2018)                   JoC 2018, 11(4): 25-36 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohamadpor S, Binazadeh T. Robust Observer-Based Synchronization of Unified Chaotic Systems in the Presence of Dead-Zone Nonlinearity Input. JoC 2018; 11 (4) :25-36
URL: http://joc.kntu.ac.ir/article-1-413-en.html
1- shiraz university of technology
Abstract:   (15136 Views)

In this paper, the synchronization of unified chaotic systems in the presence of practical constraints is considered. Constraints that this paper is considered are: dead-zone nonlinearity input, model uncertainty, external disturbance and the unavailability of state variables. First, the dynamical model of the unified chaotic systems in the presence of aforesaid constraints is introduced. Then, an observer-based adaptive controller is designed which guarantees robust synchronization between two unified chaotic systems (i.e. master and slave systems). For this purpose, a theorem is given and according to a Lyapunov stabilization approach, it is guaranteed that the proposed controller leads to robust synchronization objective despite the dead-zone nonlinearity input and also uncertainty terms. Finally, the computer simulations show proper performance of the proposed law in robust synchronization of the unified chaotic systems

Full-Text [PDF 1118 kb]   (2590 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2016/10/16 | Accepted: 2017/07/26 | Published: 2017/11/18

1. B. Nana, P. Woafo, and S. Domngang, "Chaotic synchronization with experimental application to secure communications," Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2266-2276, 2009. [DOI:10.1016/j.cnsns.2008.06.028]
2. C.S. Zhou, J. Kurths, E. Allaria, S. Boccaletti, and R. Meucci, "Noise-enhanced synchronization of homoclinic chaos in a CO 2 laser," Physical Review E, vol. 67, no. 1, pp. 015205, 2003. [DOI:10.1103/PhysRevE.67.015205]
3. S. Vaidyanathan, "Adaptive synchronization of chemical chaotic reactors," Int J ChemTech Res, vol. 8, no. 2, pp. 612-621, 2015.
4. J.E. Skinner, M. Molnar, T. Vybiral, and M. Mitra, "Application of chaos theory to biology and medicine," Integrative Physiological and Behavioral Science, vol. 27, no. 1, pp. 39-53, 1992. [DOI:10.1007/BF02691091]
5. M.T. Ziabari, A. Moarefianpur, and M. Morvarid, "Fuzzy stability and synchronization of new 3D chaotic systems," International Journal of Information Engineering and Electronic Business (IJIEEB), vol. 6, no. 5, pp. 53, 2014. [DOI:10.5815/ijieeb.2014.05.08]
6. A. Boulkroune, A. Bouzeriba, and T. Bouden, "Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems." Neurocomputing, vol. 173, pp. 606-614, 2016. [DOI:10.1016/j.neucom.2015.08.003]
7. S. Vaidyanathan, V.T. Pham, and C.K. Volos, "Adaptive Backstepping Control, Synchronization and Circuit Simulation of a Novel Jerk Chaotic System with a Quartic Nonlinearity," Advances and Applications in Chaotic Systems. Springer International Publishing, pp. 109-135, 2016. [DOI:10.1007/978-3-319-30279-9_5]
8. W. Xing-Yuan, and Z. Hao, "Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system," Chinese Physics B, vol. 22, no. 4, pp. 048902, 2013.
9. S. Mohammadpour, T. Binazadeh, "Observer-based synchronization of uncertain chaotic systems subject to input Saturation", Transactions of the Institute of Measurement and Control. DOI: 10.1177/0142331217705435, 2017. [DOI:10.1177/0142331217705435]
10. S. Mohammadpour, T. Binazadeh, "Robust adaptive synchronization of chaotic systems with nonsymmetric input saturation constraints", Journal of Computational and Nonlinear Dynamics, 13(1), p.011005, 2018
11. H.T. Yau, S.Y. Wu, C.L. Chen, and Y.C. Li, "Fractional-order chaotic self-synchronization-based tracking faults diagnosis of ball bearing systems," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3824-3833, 2016. [DOI:10.1109/TIE.2016.2522941]
12. L. Cao, and X. Chen, "Input–output linearization minimum sliding mode error feedback control for synchronization of chaotic system," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 229, no. 8, pp. 685-699, 2015. [DOI:10.1177/0959651815583196]
13. A. Boulkroune, and M. M'saad, "Fuzzy adaptive observer-based projective synchronization for nonlinear systems with input nonlinearity," Journal of Vibration and Control, vol. 18, no. 3, pp. 437–450, 2011. [DOI:10.1177/1077546311411228]
14. M.C. Pai, "Adaptive sliding mode observer‐based synchronization for uncertain chaotic systems," Asian Journal of Control, vol. 14, no. 3, pp. 736-743, 2012. [DOI:10.1002/asjc.290]
15. M. Zhao, H.G. Zhang, Z.L. Wang, and H.J. Liang, "Observer-based lag synchronization between two different complex networks," Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 6, pp. 2048-2059, 2014. [DOI:10.1016/j.cnsns.2013.09.041]
16. J. Sun, and Q. Yin, "Robust fault-tolerant full-order and reduced-order observer synchronization for differential inclusion chaotic systems with unknown disturbances and parameters," Journal of Vibration and Control, vol. 21, no. 11, pp. 2134-2148, 2015. [DOI:10.1177/1077546313508296]
17. P. Bagheri, M. Shahrokhi, and H. Salarieh, "Adaptive observer-based synchronization of two non-identical chaotic systems with unknown parameters," Journal of Vibration and Control, pp. 1-11, 2015.
18. Z. Zhang, J.H. Park, and H. Shao, "Adaptive synchronization of uncertain unified chaotic systems via novel feedback controls," Nonlinear Dynamics, vol. 81, no. 1-2, pp. 695-706, 2015. [DOI:10.1007/s11071-015-2020-6]
19. J.H. Park, "Aaptive synchronization of a unified chaotic system with an uncertain parameter," International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp.201-206, 2005. [DOI:10.1515/IJNSNS.2005.6.2.201]
20. S. Chen, Q. Yang, and C. Wang, "Impulsive control and synchronization of unified chaotic system," Chaos, solitons & fractals, vol. 20, no. 4, pp. 751-758, 2004. [DOI:10.1016/j.chaos.2003.08.008]
21. F. Wang, and C. Liu, "Synchronization of unified chaotic system based on passive control," Physica D: Nonlinear Phenomena, vol. 225, no.1, pp. 55-60, 2007. [DOI:10.1016/j.physd.2006.09.038]
22. W. Yu, "Finite-time stabilization of three-dimensional chaotic systems based on CLF." Physics Letters A, vol. 374. no. 30, pp. 3021-3024, 2012. [DOI:10.1016/j.physleta.2010.05.040]
23. H. Wang, Z. Han, W. Zhang, and Q. Xie, "Synchronization of unified chaotic systems with uncertain parameters based on the CLF," Nonlinear Analysis: Real World Applications, vol. 10, no. 2, pp. 715-722, 2009. [DOI:10.1016/j.nonrwa.2007.10.025]
24. S. Kuntanapreeda, "Robust synchronization of fractional-order unified chaotic systems via linear control," Computers & Mathematics with Applications, vol. 63, no.1, pp.183-190, 2012. [DOI:10.1016/j.camwa.2011.11.007]
25. D.J. Li, "Adaptive neural network control for unified chaotic systems with dead-zone input," Journal of Vibration and Control, pp. 1–6, 2013.
26. A. Boulkroune, S. Hamel, and A.T. Azar, "Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input," Advances in Chaos Theory and Intelligent Control. Springer International Publishing, pp. 699-718, 2016. [DOI:10.1007/978-3-319-30340-6_29]
27. Y. Liu, and D. Lin, "Sliding mode control for uncertain chaotic systems with nonlinear inputs," Mechanical Engineering Research, vol. 2, no. 1, pp. 1, 2012. [DOI:10.5539/mer.v2n1p1]
28. Z.Q. L.i, G.Y Tang, and P.R. Peng, "Synchronization of uncertain unified chaotic systems with dead-zone nonlinearity," 2008 Chinese Control and Decision Conference, IEEE, pp. 2876-2881, 2008. [DOI:10.1109/CCDC.2008.4597850]
29. L. Qiaoping, and L. Wenlin, "Synchronization of chua's circuit system with dead-zone in the control input," Industrial Mechatronics and Automation (ICIMA), 2010 2nd International Conference on, vol. 2, 2010. [DOI:10.1109/ICINDMA.2010.5538373]
30. S. Hamel, and A. Boulkroune, "A generalized function projective synchronization scheme for uncertain chaotic systems subject to input nonlinearities," International Journal of General Systems, vol. 45, no. 6, pp. 689-710. 2016. [DOI:10.1080/03081079.2015.1118094]
31. T.Y. Chiang, J.S. Lin, T.L. Liao, and J.J. Yan, "Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity," Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no. 9, pp. 2629-2637, 2008. [DOI:10.1016/j.na.2007.02.009]
32. M. Zribi, N. Smaoui, and H. Salim, "Synchronization of the unified chaotic systems using a sliding mode controller," Chaos, Solitons & Fractals, vol. 42, no. 5, pp. 3197-3209, 2009. [DOI:10.1016/j.chaos.2009.04.051]
33. Z.Q. Li, G.Y. Tang, and P.R. Peng, "Synchronization of uncertain unified chaotic systems with dead-zone nonlinearity," 2008 Chinese Control and Decision Conference. IEEE, pp. 2876-2881, 2008. [DOI:10.1109/CCDC.2008.4597850]
34. H. Wang, Z. Han, W. Zhang, and Q. Xie, "Chaos control and synchronization of unified chaotic systems via linear control," Journal of sound and vibration, vol. 320, no. 1, pp.365-372, 2009. [DOI:10.1016/j.jsv.2008.07.023]
35. H.K. Khalil, "Nonlinear control," Prentice Hall. 2014.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb