دوره 16، شماره 2 - ( مجله کنترل، جلد 16، شماره 2، تابستان 1401 )                   جلد 16 شماره 2,1401 صفحات 54-41 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saki S, Bolandi H. Definition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics. JoC 2022; 16 (2) :41-54
URL: http://joc.kntu.ac.ir/article-1-849-fa.html
ساکی سامان، بلندی حسین. تعریف فضای اپراتوری عمومی و متریک s-Gap برای سنجش پایداری مقاوم سیستم های کنترلی با دینامیک غیرخطی. مجله کنترل 1401; 16 (2) :54-41

URL: http://joc.kntu.ac.ir/article-1-849-fa.html


1- دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران
2- گروه کنترل دانشکده مهندسی برق دانشگاه علم و صنعت ایران،تهران، ایران
چکیده:   (1637 مشاهده)
در دهه­های اخیر، متریک­ها به عنوان ابزارهایی برای آنالیز پایداری مقاوم سیستم­های کنترلی معرفی شده­اند. از مهم­ترین مشکلات این ابزارها می­توان به محدودیت کارایی آن­ها در آنالیز پایداری سیستم­های حلقه بسته با دینامیک غیرخطی اشاره کرد. در برخی مقالات، نویسندگان خطی سازی سیستم و استفاده از ایده متریک خطی را مطرح کرده­اند. در این مقاله نشان می­دهیم تکیه بر مدل خطی کافی نبوده و ابزارهای ریاضی جدید­تری برای آنالیز پایداری مقاوم این سیستم­ها نیاز است. لذا، تعریف فضای اپراتوری عمومی[1] S به عنوان مهم­ترین نوآوری برای تعیین ضعیف­ترین توپولوژی میان دو سیستم غیرخطی مطرح می­شود. در این فضا، اپراتورهای غیرخطی (سیستم­های دینامیک غیرخطی) با منیفلد[2] توپولوژی[3] دیفرانسیل­پذیر به صورت ایزومورفیسم­های ایزومتریکی[4] بیان می­شوند. ثمره این تعریف، امکان پذیری محاسبه متریک غیرخطی است که تعریف معیار جدید s-gap را نتیجه می­دهد. نشان می­دهیم که محاسبه متریک غیرخطی بر روی گراف­های ایجاد شده را می­توان به محافظه کارترین فضای مماس در فضای اپراتوری S تعبیر کرد. همچنین، با توجه به روابط و تعریف فضای اپراتوری جدید، باند بالای بهره یا باند پایین حاشیه پایداری تعمیم یافته[5] (GSM) سیستم حلقه بسته تعیین می­شود که در کنار s-gap تئوری جدیدی برای پایداری مقاوم ارائه می­دهد. تئوری پیشرفته اپراتوری و نتایج شبیه سازی، صحت ادعاهای مطرح شده را با اطمینان تایید می­کند.
 
[1] General operator space
[2] Manifold
[3] Topology
[4] Isometric isomorphism
[5] Generalized stability margin
متن کامل [PDF 636 kb]   (76 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1400/1/13 | پذیرش: 1400/9/11 | انتشار الکترونیک پیش از انتشار نهایی: 1400/12/16

فهرست منابع
1. [1] T. T. Georgiou and M. C. Smith, "Optimal robustness in the gap metric," IEEE Trans. Automat. Contr., vol. 35, no. 6, pp. 673-686, 1990. [DOI:10.1109/9.53546]
2. [2] G. Vinnicombe, "Frequency domain uncertainty and the graph topology," IEEE Trans. Automat. Contr., vol. 38, no. 9, pp. 1371-1383, 1993. [DOI:10.1109/9.237648]
3. [3] G. Vinnicombe, Uncertainty and Feedback: H [infinity] Loop-shaping and the [nu]-gap Metric. World Scientific, 2001. [DOI:10.1142/p140]
4. [4] S. Kersting and M. Buss, "How to Systematically Distribute Candidate Models and Robust Controllers in Multiple-Model Adaptive Control: A Coverage Control Approach," IEEE Trans. Automat. Contr., vol. 63, no. 4, pp. 1075-1089, 2018. [DOI:10.1109/TAC.2017.2731946]
5. [5] M. Ahmadi and M. Haeri, "Multimodel control of nonlinear systems: An improved gap metric and stability margin-based method," J. Dyn. Syst. Meas. Control, vol. 140, no. 8, 2018. [DOI:10.1115/1.4039086]
6. [6] S. Saki, H. Bolandi, and S. K. Mousavi Mashhadi, "Optimal direct adaptive soft switching multi-model predictive control using the gap metric for spacecraft attitude control in a wide range of operating points," Aerosp. Sci. Technol., vol. 77, 2018, doi: 10.1016/j.ast.2018.03.001. [DOI:10.1016/j.ast.2018.03.001]
7. [7] S. X. Ding, "Application of factorization and gap metric techniques to fault detection and isolation part I: A factorization technique based FDI framework," IFAC-PapersOnLine, vol. 48, no. 21, pp. 113-118, 2015. [DOI:10.1016/j.ifacol.2015.09.513]
8. [8] L. Li and S. X. Ding, "Gap metric techniques and their application to fault detection performance analysis and fault isolation schemes," Automatica, vol. 118, p. 109029, 2020. [DOI:10.1016/j.automatica.2020.109029]
9. [9] T. Koenings, M. Krueger, H. Luo, and S. X. Ding, "A data-driven computation method for the gap metric and the optimal stability margin," IEEE Trans. Automat. Contr., vol. 63, no. 3, pp. 805-810, 2017. [DOI:10.1109/TAC.2017.2735023]
10. [10] H. Bolandi and S. Saki, "Design of adaptive model predictive control for a class of uncertain non-linear dynamic systems: stability, convergence, and robustness analysis," IET Control Theory Appl., vol. 13, no. 15, pp. 2376-2386, 2019. [DOI:10.1049/iet-cta.2019.0061]
11. [11] D. Shaghaghi, A. Fatehi, and A. Khaki-Sedigh, "Multi-linear model set design based on the nonlinearity measure and H-gap metric," ISA Trans., vol. 68, pp. 1-13, 2017. [DOI:10.1016/j.isatra.2017.01.021]
12. [12] M. Ahmadi and M. Haeri, "A systematic decomposition approach of nonlinear systems by combining gap metric and stability margin," Trans. Inst. Meas. Control, vol. 43, no. 9, pp. 2006-2017, 2021. [DOI:10.1177/0142331221989009]
13. [13] X. Tao, N. Li, and S. Li, "Multiple model predictive control for large envelope flight of hypersonic vehicle systems," Inf. Sci. (Ny)., vol. 328, pp. 115-126, 2016. [DOI:10.1016/j.ins.2015.08.033]
14. [14] T. T. Georgiou and M. C. Smith, "Robustness analysis of nonlinear feedback systems: An input-output approach," IEEE Trans. Automat. Contr., vol. 42, no. 9, pp. 1200-1221, 1997. [DOI:10.1109/9.623082]
15. [15] T. Gong and Y. Lu, "The relationship between gap metric and time-varying gap metric for linear time-varying systems," Int. J. Innov. Comput. Inform. Control, vol. 9, pp. 2125-2141, 2013.
16. [16] B. D. O. Anderson, T. S. Brinsmead, and F. De Bruyne, "The Vinnicombe metric for nonlinear operators," IEEE Trans. Automat. Contr., vol. 47, no. 9, pp. 1450-1465, 2002. [DOI:10.1109/TAC.2002.802767]
17. [17] S. Z. Khong and M. Cantoni, "On the metric property of an LTV generalisation of the $ν$-gap," in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 214-219. [DOI:10.1109/CDC.2012.6427107]
18. [18] S. Z. Khong and M. Cantoni, "Gap metrics for time-varying linear systems in a continuous-time setting," Syst. Control Lett., vol. 70, pp. 118-126, 2014. [DOI:10.1016/j.sysconle.2014.06.003]
19. [19] S. M. Djouadi, "On robustness in the gap metric and coprime factor uncertainty for LTV systems," Syst. Control Lett., vol. 80, pp. 16-22, 2015. [DOI:10.1016/j.sysconle.2015.03.006]
20. [20] M. S. Akram and M. Cantoni, "Gap metrics for linear time-varying systems," SIAM J. Control Optim., vol. 56, no. 2, pp. 782-800, 2018. [DOI:10.1137/16M1092775]
21. [21] M. Cantoni and H. Pfifer, "Gap metric computation for time-varying linear systems on finite horizons," IFAC-PapersOnLine, vol. 50, no. 1, pp. 14513-14518, 2017. [DOI:10.1016/j.ifacol.2017.08.2073]
22. [22] K. Glover and D. McFarlane, "Robust stabilization of normalized coprime factor plant descriptions with H/sub infinity/-bounded uncertainty," IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 821-830, 1989. [DOI:10.1109/9.29424]
23. [23] V. Zahedzadeh, H. J. Marquez, and T. Chen, "On the computation of an upper bound on the gap metric for a class of nonlinear systems," in 2008 American Control Conference, 2008, pp. 1917-1922. [DOI:10.1109/ACC.2008.4586772]
24. [24] V. Zahedzadeh, H. J. Marquez, and T. Chen, "Upper bounds for induced operator norms of nonlinear systems," IEEE Trans. Automat. Contr., vol. 54, no. 5, pp. 1159-1165, 2009. [DOI:10.1109/TAC.2009.2017813]
25. [25] V. Zahedzadeh, H. J. Marquez, and T. Chen, "On the robust stability of unforced nonlinear systems," in Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 343-348. [DOI:10.1109/CDC.2006.377066]
26. [26] V. Zahedzadeh, H. J. Marquez, and T. Chen, "On the input-output stability of nonlinear systems: Large gain theorem," in 2008 American Control Conference, 2008, pp. 3440-3445. [DOI:10.1109/ACC.2008.4587025]
27. [27] K. Zhou and J. C. Doyle, Essentials of robust control, vol. 104. Prentice hall Upper Saddle River, NJ, 1998.
28. [28] A. El-Sakkary, "The gap metric: Robustness of stabilization of feedback systems," IEEE Trans. Automat. Contr., vol. 30, no. 3, pp. 240-247, 1985. [DOI:10.1109/TAC.1985.1103926]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2022 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb