Volume 16, Issue 4 (Journal of Control, V.16, N.4 Winter 2023)                   JoC 2023, 16(4): 39-55 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabahi F. Introducing Ranking for f-transformed Set in Extended Fuzzy Logic Application to Decision Making in Disease Diagnosis. JoC 2023; 16 (4) :39-55
URL: http://joc.kntu.ac.ir/article-1-940-en.html
Urmia University
Abstract:   (2269 Views)
The sense of approximate reasoning within fuzzy logic, in contrast to precise reasoning within classical logic, provided an intuitive way of handling many of the world’s difficult problems. But can fuzzy logic, by itself, handle the sort of uncertainty that we find in the class of open world problems? Recently, Zadeh introduced an extension of fuzzy logic that means being flexible while looking for new solutions. The concept of f-transformation is one of the fundamental concepts in extended fuzzy logic, it is important to define f-transformed set up to develop extended fuzzy logic. This f-transformed set is named as f-set. On the other hand, in order to translate the hierarchy into an approximated argument process in extended fuzzy logic, it is necessary to rank the f-sets. In fact, f-sets, in most cases, may overlap in two their parallel spaces of possibility and validity, while their ranking is done in possibility space. This property of f-sets raises further questions: how would f-sets be ranked when their fuzzy validity set of one covers another? These and other questions surrounding the ranking of f-set numbers raise challenging issues. To meet these challenges and to have a proper ranking and to interact with the two parallel spaces of validity and possibility, we have incorporated the concept of equilibrium in the form of validity constrained optimality in ranking for the first time. The proposed ranking approach is applied to examples taken from previous comparative studies from the literature and compared with their results. In addition, to illustrate efficiency, the proposed approach has been evaluated through the help of disease diagnosis, which is one of the scientific today requests by a case study of aphasia diagnosis.
Full-Text [PDF 1170 kb]   (350 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2022/06/8 | Accepted: 2022/12/28 | ePublished ahead of print: 2023/01/3

References
1. [1] A. Makovelski, Histoire de la Logique. Editions du Progres; (In Persian by F. Shaiani), 1978.
2. [2] M. Menhaj, B.,, Fuzzy Computations. Tehran: Daneshnegar, In presion, 2009, p. 639.
3. [3] L. Zadeh, A., "From Circuit Theory to System Theory," in Proceedings of the IRE, 1962, vol. 50, no. 5, pp. 856-865. [DOI:10.1109/JRPROC.1962.288302]
4. [4] R. Bellman, R. Kalaba, and L. A. Zadeh, "Abstraction and pattern classification," in Fuzzy sets, fuzzy logic, and fuzzy systems Inc. River Edge, NJ, USA: World Scientific Publishing Co., , pp. 44 - 50. [DOI:10.1142/9789814261302_0003]
5. [5] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338-353, 1965/06/01/ 1965, doi: https://doi.org/10.1016/S0019-9958(65)90241-X [DOI:10.1016/S0019-9958(65)90241-X.]
6. [6] P. Hájek, "What is mathematical fuzzy logic," Fuzzy Sets and Systems, vol. 157, no. 5, pp. 597-603, 2006, doi: 10.1016/j.fss.2005.10.004. [DOI:10.1016/j.fss.2005.10.004]
7. [7] D. Dubois and H. Prade, "Fuzzy sets in approximate reasoning, Part 1: Inference with possibility distributions," Fuzzy Sets and Systems, vol. 40, no. 1, pp. 143-202, 1991, doi: http://dx.doi.org/10.1016/0165-0114(91)90050-Z. [DOI:10.1016/0165-0114(91)90050-Z]
8. [8] D. Dubois, J. Lang, and H. Prade, "Fuzzy sets in approximate reasoning, Part 2: logical approaches," Fuzzy Sets and Systems, vol. 40, no. 1, pp. 203-244, 1991, doi: http://dx.doi.org/10.1016/0165-0114(91)90051-Q. [DOI:10.1016/0165-0114(91)90051-Q]
9. [9] H. Hagras and C. Wagner, "Towards the Wide Spread Use of Type-2 Fuzzy Logic Systems in Real World Applications," IEEE Computational Intelligence Magazine, vol. 7, no. 3, pp. 14-24, 2012, doi: 10.1109/MCI.2012.2200621. [DOI:10.1109/MCI.2012.2200621]
10. [10] J. M. Mendel and W. Dongrui, "Challenges for Perceptual Computer Applications and How They Were Overcome," Computational Intelligence Magazine, IEEE, vol. 7, no. 3, pp. 36-47, 2012, doi: 10.1109/mci.2012.2200627. [DOI:10.1109/MCI.2012.2200627]
11. [11] L. A. Zadeh, "Toward extended fuzzy logic-A first step," Fuzzy Sets Syst, vol. 160, pp. 3175-3181, 2009, doi: 10.1016/j.fss.2009.04.009. [DOI:10.1016/j.fss.2009.04.009]
12. [12] R. Giles, "A formal system for fuzzy reasoning," Fuzzy Sets and Systems, vol. 2, pp. 233-257, 1979. [DOI:10.1016/0165-0114(79)90029-0]
13. [13] H.-W. Liu and G.-J. Wang, "Multi-criteria decision-making methods based on intuitionistic fuzzy sets," European Journal of Operational Research vol. 179, pp. 220-233, 2007. [DOI:10.1016/j.ejor.2006.04.009]
14. [14] K. Atanassov, "Intuitionistic fuzzy sets," Fuzzy Sets and Systems, vol. 20, pp. 87-96, 1986. [DOI:10.1016/S0165-0114(86)80034-3]
15. [15] F. Sabahi and M. R. Akbarzadeh-T, "A qualified description of extended fuzzy logic," Information Sciences, vol. 244, pp. 60-74, 2013/09/20/ 2013, doi: https://doi.org/10.1016/j.ins.2013.03.020 [DOI:10.1016/j.ins.2013.03.020.]
16. [16] B. Kang, D.Wei, Y.Li, and Y. Deng, "A method of converting Z-number to classical fuzzy number," J. Inform. Comput. Sci., vol. 9, pp. 703-709, 2012.
17. [17] F. Sabahi, "On the Theory of Imprecise Logic and Reasoning based on Extended Fuzzy Logic: Application to Judicial and Medical Decision Making," Faculty of Engineering Ferdowsi University of Mashhad, In Partial Fulfillment of the Requirements of the Degree DOCTOR OF PHILOSOPHY (Control Engineering), 2013.
18. [18] X. Wang and E. E. Kerre, "Reasonable properties for the ordering of fuzzy quantities (II)," Fuzzy Sets and Systems, vol. 118, no. 3, pp. 387-405, 2001, doi: 10.1016/s0165-0114(99)00063-9. [DOI:10.1016/S0165-0114(99)00063-9]
19. [19] R. Jain, "Decision-making in the Presence of Fuzzy Variables," Systems, Man and Cybernetics, IEEE Transactions on, vol. 6, no. 10, pp. 698-703, 1976. [DOI:10.1109/TSMC.1976.4309421]
20. [20] R. R. Yager, "On a general class of fuzzy connectives," Fuzzy Sets and Systems, vol. 4, no. 3, pp. 235-242, 1980, doi: 10.1016/0165-0114(80)90013-5. [DOI:10.1016/0165-0114(80)90013-5]
21. [21] S. Murakami and M. Maeda, "Fuzzy decision analysis in the development of centralized regional energy control systems," Journal Name: Energy Dev. Jpn.; (United States); Journal Volume: 6:4, pp. Medium: X; Size: Pages: 379-396, 1984.
22. [22] E. S. Lee and R. J. Li, "Comparison of fuzzy numbers based on the probability measure of fuzzy events," Computers & Mathematics with Applications, vol. 15, no. 10, pp. 887-896, 1988, doi: 10.1016/0898-1221(88)90124-1. [DOI:10.1016/0898-1221(88)90124-1]
23. [23] I. Requena, M. Delgado, and J. L. Verdegay, "Automatic ranking of fuzzy numbers with the criterion of a decision-maker learnt by an artificial neural network," Fuzzy Sets and Systems, vol. 64, no. 1, pp. 1-19, 1994, doi: 10.1016/0165-0114(94)90002-7. [DOI:10.1016/0165-0114(94)90002-7]
24. [24] P. Fortemps and M. Roubens, "Ranking and defuzzification methods based on area compensation," Fuzzy Sets and Systems, vol. 82, no. 3, pp. 319-330, 1996, doi: 10.1016/0165-0114(95)00273-1. [DOI:10.1016/0165-0114(95)00273-1]
25. [25] C.-H. Cheng, "A new approach for ranking fuzzy numbers by distance method," Fuzzy Sets and Systems, vol. 95, no. 3, pp. 307-317, 1998, doi: 10.1016/s0165-0114(96)00272-2. [DOI:10.1016/S0165-0114(96)00272-2]
26. [26] L.-H. Chen and H.-W. Lu, "An approximate approach for ranking fuzzy numbers based on left and right dominance," Computers & Mathematics with Applications, vol. 41, no. 12, pp. 1589-1602, 2001, doi: 10.1016/s0898-1221(01)00124-9. [DOI:10.1016/S0898-1221(01)00124-9]
27. [27] T.-C. Chu and C.-T. Tsao, "Ranking fuzzy numbers with an area between the centroid point and original point," Computers & Mathematics with Applications, vol. 43, no. 1-2, pp. 111-117, 2002, doi: 10.1016/s0898-1221(01)00277-2. [DOI:10.1016/S0898-1221(01)00277-2]
28. [28] Y.-J. Wang and H.-S. Lee, "The revised method of ranking fuzzy numbers with an area between the centroid and original points," Computers & Mathematics with Applications, vol. 55, no. 9, pp. 2033-2042, 2008, doi: 10.1016/j.camwa.2007.07.015. [DOI:10.1016/j.camwa.2007.07.015]
29. [29] L. H. Chen and H. W. Lu "The Preference Order of Fuzzy Numbers," Computers and Mathematics with Applications, vol. 44, no. 10, pp. 105-114, 2002. [DOI:10.1016/S0898-1221(02)00270-5]
30. [30] S. J. Chen and S. M. Chen, "A new method for handling multicriteria fuzzy decision_making problems using FN-IOWA operators," Cybernetics and Systems, vol. 34, no. 2, pp. 109-197, 2003. [DOI:10.1080/01969720302866]
31. [31] D. Yong and L. Qi, "A TOPSIS-based centroid-index ranking method of fuzzy numbers and its application in decision-making," Cybernetics and Systems, vol. 36, no. 6, pp. 581-595, 2005, doi: 10.1080/01969720590961727. [DOI:10.1080/01969720590961727]
32. [32] H. W. Lu and C. B. Wang, "An Index for Ranking Fuzzy Numbers by Belief Feature," Information and Management Sciences, vol. 16, no. 3, pp. 55-70, 2005.
33. [33] M. L. Wang, H. F. Wang, and C. L. Lin, "Ranking Fuzzy Number Based on Lexicographic Screening Procedure," International Journal of Information Technology and Decision Making, vol. 4, no. 4, pp. 663-678 2005. [DOI:10.1142/S0219622005001696]
34. [34] Z.-X. Wang, Y.-J. Liu, Z.-P. Fan, and B. Feng, "Ranking L-R fuzzy number based on deviation degree," Information Sciences, vol. 179, no. 13, pp. 2070-2077, 2009, doi: 10.1016/j.ins.2008.08.017. [DOI:10.1016/j.ins.2008.08.017]
35. [35] B. Asady, "The revised method of ranking LR fuzzy number based on deviation degree," Expert Systems with Applications, vol. 37, no. 7, pp. 5056-5060, 2010, doi: http://dx.doi.org/10.1016/j.eswa.2009.12.005. [DOI:10.1016/j.eswa.2009.12.005]
36. [36] Y. Deng, Z. Zhenfu, and L. Qi, "Ranking fuzzy numbers with an area method using radius of gyration," Computers & Mathematics with Applications, vol. 51, no. 6-7, pp. 1127-1136, 2006, doi: 10.1016/j.camwa.2004.11.022. [DOI:10.1016/j.camwa.2004.11.022]
37. [37] S. Nasseri, H and M. Sohrabi, "Ranking fuzzy numbers by using radius of gration," Australian Journal of Basic & Applied Sciences, vol. 4, no. 4, pp. 658-664, 2010.
38. [38] B. Asady and A. Zendehnam, "Ranking fuzzy numbers by distance minimization," Applied Mathematical Modelling, vol. 31, no. 11, pp. 2589-2598, 2007, doi: 10.1016/j.apm.2006.10.018. [DOI:10.1016/j.apm.2006.10.018]
39. [39] B. Asady, "Revision of distance minimization method for ranking of fuzzy numbers," Applied Mathematical Modelling, vol. 35, no. 3, pp. 1306-1313, 2011, doi: 10.1016/j.apm.2010.09.007. [DOI:10.1016/j.apm.2010.09.007]
40. [40] S. Abbasbandy and T. Hajjari, "A new approach for ranking of trapezoidal fuzzy numbers," Computers & Mathematics with Applications, vol. 57, no. 3, pp. 413-419, 2009, doi: 10.1016/j.camwa.2008.10.090. [DOI:10.1016/j.camwa.2008.10.090]
41. [41] R. Ezzati, T. Allahviranloo, S. Khezerloo, and M. Khezerloo, "An approach for ranking of fuzzy numbers," Expert Systems with Applications, vol. 39, no. 1, pp. 690-695, 2012, doi: 10.1016/j.eswa.2011.07.060. [DOI:10.1016/j.eswa.2011.07.060]
42. [42] L.-W. Lee and S.-M. Chen, "Fuzzy risk analysis based on fuzzy numbers with different shapes and different deviations," Expert Systems with Applications, vol. 34, no. 4, pp. 2763-2771, 2008, doi: http://dx.doi.org/10.1016/j.eswa.2007.05.009. [DOI:10.1016/j.eswa.2007.05.009]
43. [43] S.-M. Chen and J.-H. Chen, "Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads," Expert Systems with Applications, vol. 36, no. 3, Part 2, pp. 6833-6842, 2009, doi: http://dx.doi.org/10.1016/j.eswa.2008.08.015. [DOI:10.1016/j.eswa.2008.08.015]
44. [44] Y.-M. Wang and Y. Luo, "Area ranking of fuzzy numbers based on positive and negative ideal points," Computers & Mathematics with Applications, vol. 58, no. 9, pp. 1769-1779, 2009, doi: 10.1016/j.camwa.2009.07.064. [DOI:10.1016/j.camwa.2009.07.064]
45. [45] S.-M. Chen and K. Sanguansat, "Analyzing fuzzy risk based on a new fuzzy ranking method between generalized fuzzy numbers," Expert Systems with Applications, vol. 38, no. 3, pp. 2163-2171, 2011, doi: http://dx.doi.org/10.1016/j.eswa.2010.08.002. [DOI:10.1016/j.eswa.2010.08.002]
46. [46] P. Xu, X. Su, J. Wu, X. Sun, Y. Zhang, and Y. Deng, "A note on ranking generalized fuzzy numbers," Expert Systems with Applications, vol. 39, no. 7, pp. 6454-6457, 2012, doi: http://dx.doi.org/10.1016/j.eswa.2011.12.062. [DOI:10.1016/j.eswa.2011.12.062]
47. [47] N. Paradin, "Ranking of fuzzy numbers by using distance between convex combination of upper and lower central gravity of alpha-level and the origin of coordinate system," Applied mathematical Science, vol. 5-8, no. 7, pp. 327-335, 2011.
48. [48] A. M. Nejad and M. Mashinchi, "Ranking fuzzy numbers based on the areas on the left and the right sides of fuzzy number," Computers & Mathematics with Applications, vol. 61, no. 2, pp. 431-442, 2011, doi: 10.1016/j.camwa.2010.11.020. [DOI:10.1016/j.camwa.2010.11.020]
49. [49] P. P. B. Rao and N. R. Shankar, "Ranking Fuzzy Numbers with a Distance Method using Circum center of Centroids and an Index of Modality," Advances in Fuzzy Systems, vol. 2011 no. Article ID 178308, p. 7, 2011. [DOI:10.1155/2011/178308]
50. [50] P. P. B. Rao and N. R. Shankar, "Ranking Generalized Fuzzy Numbers using Area, Mode, Spreads and Weights," International Journal of Applied Science and Engineering, vol. 10 no. 1, pp. 41-57, 2012.
51. [51] Y. L. P. Thorani, P. P. B. Rao, and N. R. Shankar, "Ordering Generalized Trapezoidal Fuzzy Numbers," Int. J. Contemp. Math. Sciences, vol. 7, no. 12, pp. 555 - 573, 2012. [DOI:10.12988/ams.2013.34228]
52. [52] R. Abbasi Shureshjani and M. Darehmiraki, "A new parametric method for ranking fuzzy numbers," Indagationes Mathematicae, vol. In Press, Corrected Proof, no. 0, 2013, doi: http://dx.doi.org/10.1016/j.indag.2013.02.002. [DOI:10.1016/j.indag.2013.02.002]
53. [53] M. Brunelli and J. Mezei, "How different are ranking methods for fuzzy numbers? A numerical study," International Journal of Approximate Reasoning, vol. In Press,Corrected Proof, no. 0, 2013, doi: http://dx.doi.org/10.1016/j.ijar.2013.01.009. [DOI:10.1016/j.ijar.2013.01.009]
54. [54] V. F. Yu, H. T. X. Chi, L. Q. Dat, P. N. K. Phuc, and C.-w. Shen, "Ranking generalized fuzzy numbers in fuzzy decision making based on the left and right transfer coefficients and areas," Applied Mathematical Modelling, In Press, Accepted Manuscript, no. 0, 2013, doi: http://dx.doi.org/10.1016/j.apm.2013.03.022. [DOI:10.1016/j.apm.2013.03.022]
55. [55] H. Deng, "Comparing and ranking fuzzy numbers using ideal solutions," Applied Mathematical Modelling, no. 0, doi: http://dx.doi.org/10.1016/j.apm.2013.09.012. [DOI:10.1016/j.apm.2013.09.012]
56. [56] H. T. X. Chi and V. F. Yu, "Ranking generalized fuzzy numbers based on centroid and rank index," Applied Soft Computing, vol. 68, pp. 283-292, 2018/07/01/ 2018, doi: https://doi.org/10.1016/j.asoc.2018.03.050 [DOI:10.1016/j.asoc.2018.03.050.]
57. [57] T. W. Liao and P. Su, "Parallel machine scheduling in fuzzy environment with hybrid ant colony optimization including a comparison of fuzzy number ranking methods in consideration of spread of fuzziness," Applied Soft Computing, vol. 56, pp. 65-81, 2017/07/01/ 2017, doi: https://doi.org/10.1016/j.asoc.2017.03.004 [DOI:10.1016/j.asoc.2017.03.004.]
58. [58] A. I. Ban and L. Coroianu, "Explicit analytical formulae of ranking indices without the requirement of multiplicative compatibility," International Journal of Approximate Reasoning, vol. 97, pp. 17-37, 2018/06/01/ 2018, doi: https://doi.org/10.1016/j.ijar.2018.03.009 [DOI:10.1016/j.ijar.2018.03.009.]
59. [59] H. Zhang, J. Xie, W. Lu, Z. Zhang, and X. Fu, "Novel ranking method for intuitionistic fuzzy values based on information fusion," Computers & Industrial Engineering, vol. 133, pp. 139-152, 2019/07/01/ 2019, doi: https://doi.org/10.1016/j.cie.2019.05.006 [DOI:10.1016/j.cie.2019.05.006.]
60. [60] M. Zhao, M.-Y. Liu, J. Su, and T. Liu, "A shape similarity-based ranking method of hesitant fuzzy linguistic preference relations using discrete fuzzy number for group decision making," Soft Computing, vol. 23, no. 24, pp. 13569-13589, 2019/12/01 2019, doi: 10.1007/s00500-019-03895-7. [DOI:10.1007/s00500-019-03895-7]
61. [61] F. Sabahi and M.-R. Akbarzadeh-T, "A human-intuitive fuzzy ranking approach with spread and skewness factors," Journal of Intelligent & Fuzzy Systems, vol. 40, pp. 10687-10701, 2021, doi: 10.3233/JIFS-201591. [DOI:10.3233/JIFS-201591]
62. [62] G. Atalik and S. Senturk, "A New Ranking Method for Triangular Intuitionistic Fuzzy Numbers," in Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making, Cham, C. Kahraman, S. Cebi, S. Cevik Onar, B. Oztaysi, A. C. Tolga, and I. U. Sari, Eds., 2020// 2020: Springer International Publishing, pp. 33-38.
63. [63] N. Van Hop, "Ranking fuzzy numbers based on relative positions and shape characteristics," Expert Systems with Applications, vol. 191, p. 116312, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.eswa.2021.116312 [DOI:10.1016/j.eswa.2021.116312.]
64. [64] S.-C. Ngan, "A user-configurable and explainable framework for ranking fuzzy numbers," Expert Systems with Applications, vol. 209, p. 118297, 2022/12/15/ 2022, doi: https://doi.org/10.1016/j.eswa.2022.118297 [DOI:10.1016/j.eswa.2022.118297.]
65. [65] N. Zumelzu, B. Bedregal, E. Mansilla, H. Bustince, and R. Diaz, "Admissible orders on fuzzy numbers," IEEE Transactions on Fuzzy Systems, pp. 1-1, 2022, doi: 10.1109/TFUZZ.2022.3160326. [DOI:10.1109/TFUZZ.2022.3160326]
66. [66] B. Yatsalo, A. Korobov, A. Radaev, J. Qin, and L. Martínez, "Ranking of Independent and Dependent Fuzzy Numbers and Intransitivity in Fuzzy MCDA," IEEE Transactions on Fuzzy Systems, vol. 30, no. 5, pp. 1382-1395, 2022, doi: 10.1109/TFUZZ.2021.3058613. [DOI:10.1109/TFUZZ.2021.3058613]
67. [67] D. Dubois and H. Prade, "Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets," Fuzzy Sets and Systems, vol. 192, no. 0, pp. 3-24, 2012, doi: 10.1016/j.fss.2010.11.007. [DOI:10.1016/j.fss.2010.11.007]
68. [68] V. Novák, "Which logic is the real fuzzy logic?," Fuzzy Sets and Systems, vol. 157, no. 5, pp. 635-641, 2006, doi: http://dx.doi.org/10.1016/j.fss.2005.10.010. [DOI:10.1016/j.fss.2005.10.010]
69. [69] F. Sabahi and M. R. Akbarzadeh-T, "Extended Fuzzy Logic: Sets and Systems," IEEE Transactions on Fuzzy Systems, vol. 24, no. 3, pp. 530-543, 2016, doi: 10.1109/TFUZZ.2015.2453994. [DOI:10.1109/TFUZZ.2015.2453994]
70. [70] Y. Y. Golota, "On a certain formalization of antonyms logic," Fuzzy Sets and Systems, vol. 45, no. 3, pp. 335-340, 1992/02/10/ 1992, doi: https://doi.org/10.1016/0165-0114(92)90152-T [DOI:10.1016/0165-0114(92)90152-T.]
71. [71] F. Sabahi, "Equilibrium Concept in Extended Fuzzy Logic Thinking," presented at the Forth National Computer, Information Technology, and Artificial Intelligent Conference, Ahvaz, Iran, 2020.
72. [72] K. Kim and K. S. Park, "Ranking fuzzy numbers with index of optimism," Fuzzy Sets and Systems, vol. 35, no. 2, pp. 143-150, 1990, doi: http://dx.doi.org/10.1016/0165-0114(90)90189-D. [DOI:10.1016/0165-0114(90)90189-D]
73. [73] X. Wang and E. E. Kerre, "Reasonable properties for the ordering of fuzzy quantities (I)," Fuzzy Sets and Systems, vol. 118, no. 3, pp. 375-385, 2001, doi: 10.1016/s0165-0114(99)00062-7. [DOI:10.1016/S0165-0114(99)00062-7]
74. [74] J.-S. Yao and K. Wu, "Ranking fuzzy numbers based on decomposition principle and signed distance," Fuzzy Sets and Systems, vol. 116, no. 2, pp. 275-288, 2000, doi: 10.1016/s0165-0114(98)00122-5. [DOI:10.1016/S0165-0114(98)00122-5]
75. [75] S. Abbasbandy and B. Asady, "Ranking of fuzzy numbers by sign distance," Information Sciences, vol. 176, pp. 2405-2416, 2006. [DOI:10.1016/j.ins.2005.03.013]
76. [76] H. Goodglass and E. Kaplan, The Assessment of Aphasia and Related Disorders Philadelphia: Lea & Febiger, 1983.
77. [77] W. Huber, K. Poeck, and D. Weniger, "The Aachen aphasia test," in Advances in Neurology. Progress in Aphasiology,, vol. 42, F. C. R. (Ed.) Ed. New York, USA,: Raven, 1984, pp. 291-303.
78. [78] M.-R. Akbarzadeh-T and M. Moshtagh-Khorasani, "A hierarchical fuzzy rule-based approach to aphasia diagnosis," Journal of Biomedical Informatics, vol. 40, no. 5, pp. 465-475, 2007, doi: http://dx.doi.org/10.1016/j.jbi.2006.12.005. [DOI:10.1016/j.jbi.2006.12.005]
79. [79] A. Tsakonas, G. Dounias, J. Jantzen, H. Axer, B. Bjerregaard, and D. G. von Keyserlingk, "Evolving rule-based systems in two medical domains using genetic programming," Artificial Intelligence in Medicine, vol. 32, no. 3, pp. 195-216, 2004. [DOI:10.1016/j.artmed.2004.02.007]
80. [80] H. Axer, J. Jantzen, V. Keyserlingk, and G. Berks, " Aphasia Classification Using Neural Networks," in European Symposium on Intelligent Techniques Aachen, 2000, pp. 111-115.
81. [81] A. Järvelin and M. Juhola, "Comparison of machine learning methods for classifying aphasic and non-aphasic speakers," Computer Methods and Programs in Biomedicine, vol. 104, no. 3, pp. 349-357, 2011, doi: http://dx.doi.org/10.1016/j.cmpb.2011.02.015. [DOI:10.1016/j.cmpb.2011.02.015]
82. [82] H. Axer, J. Jantzen, and V. K. Graf, "An aphasia database on the internet: a model for computer-assisted analysis in aphasiology,," Brain Lang, vol. 75, no. 390-398, 2000. [DOI:10.1006/brln.2000.2362]
83. [83] G. Shafer, A Mathematical Theory of Evidence. Princeton University Press., 1976. [DOI:10.1515/9780691214696]
84. [84] A. Dempster, P., "Upper and lower probabilities induced by a multivalued mapping," Annals of Mathematical Statistics, vol. 38, pp. 325-339, 1967. [DOI:10.1214/aoms/1177698950]
85. [85] D. Yu and W. Park, S., "Combination and evaluation of expert opinions characterized in terms of fuzzy probabilities," Annals of Nuclear Energy, vol. 27 pp. 713-726, 2000. [DOI:10.1016/S0306-4549(00)82012-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb